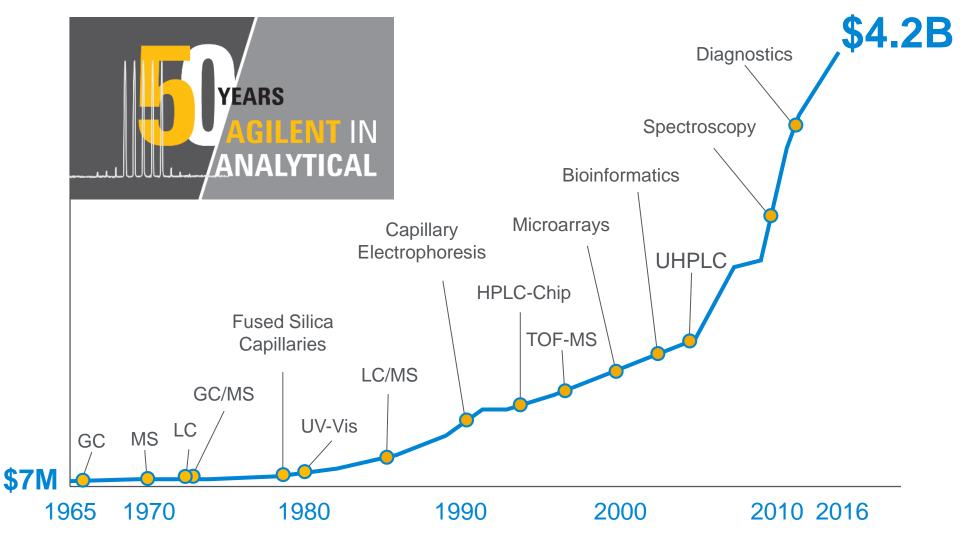
Improving Analytical Efficiency and Reducing Cost of Operation

MELA and CWEA Joint Technical Sessions

Craig Marvin Global Environmental Industry Manager

Graham Robinett Federal Account Manager – Linthicum

June 2017


A Brief History of Agilent

1939–1998:	The Hewlett-Packard years 60-year heritage of leadership and innovation	
1999:	Agilent is born Biggest IPO in Silicon Valley: \$2.1 billion	
2005:	Agilent refines scope Focus on measurement	
2006–2010:	Transformation Acquisitions, divestitures and restructuring	
2013:	World's premier measurement company \$6.8 billion revenue	Agilent Technologies
2013:	Agilent announces spinoff of Electronic Measurement Agilent to focus on Life Sciences, Diagnostics and Applied Chemical markets	
2014:	Agilent spins off Keysight Technologies The spinoff is final Nov. 1, 2014, through a tax-free distribution of Keysight common stock	Howerteer 188

MELA 2017

Agilent Leader in Analytical Applications for 50 Years

Environmental issues in the headlines Water's importance?

Why Water?

- Population growth: 7.4 billion people and counting
- Demand will increase 55% by 2050*
- Expects a 40% shortfall in water by 2030*
- Expected global population of 10.3 billion by 2050
- More than 660 million people+ live without a safe water supply close to home
- Clean water a lower priority than food/jobs/energy

* United Nations * Environment Canada

Environmental Monitoring Applications Current challenges and future requirements

Today's Challenges Expecting More from Less

Business Challenges	 Increasing cost of ownership Demands for higher throughput 	
Resource Allocation	 Less time for method development Limited technical experience 	
Optimizing Efficiency	 Trace analysis in complex matrices Quicker return on capital investment 	

Leveraging Innovation to Improve Efficiency

The challenge

Increase speed and sensitivity while decreasing cost

MS Source Redesign

- Optimizing source efficiency
- High Efficiency Source, 20x Yield
- Dioxins, SVOCs, Nitrosamines

Multi-Mode Inlet

- Reduce solvent consumption
- Controlled, large volume, heated injection
- 95% reduction in usage

Oil Free Rough Pump

- Eliminates oil leaks
- Reduce maintenance cost, ~30%
- Reduce maintenance time, >50%
- For MS and MS/MS configurations

JetClean

- Self Cleaning Ion Source
- "Clean Only" or "Clean and Acquire" operation
- Extended operation, PAH ~ 2 yrs

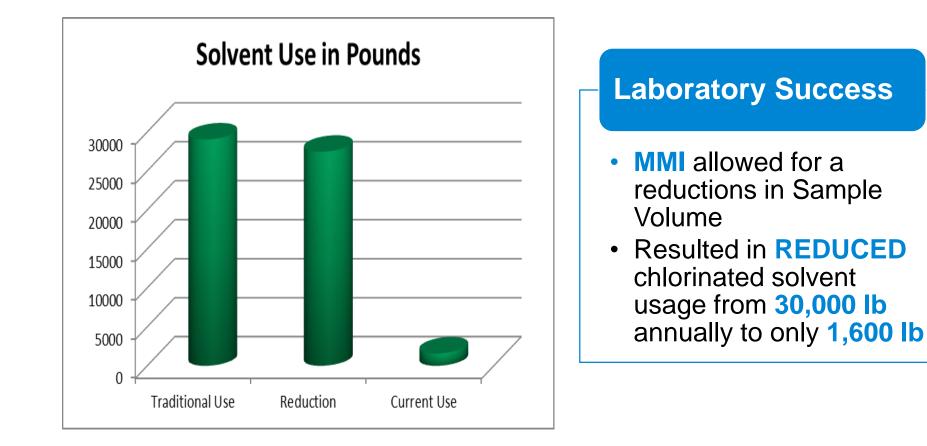
Inert Flow Path

- Ultra-inert or Ultimetal treatment of sample flow path components
- Inlet, columns, fittings, detector jets
- Gets trace analytes to detectors

VacShield

- · Service capillary without venting
- Down time ~20 min vs 12 hr
- Ultivo, 6495B

Reducing Emissions and Solvent Usage Improvements Through Improved Technology



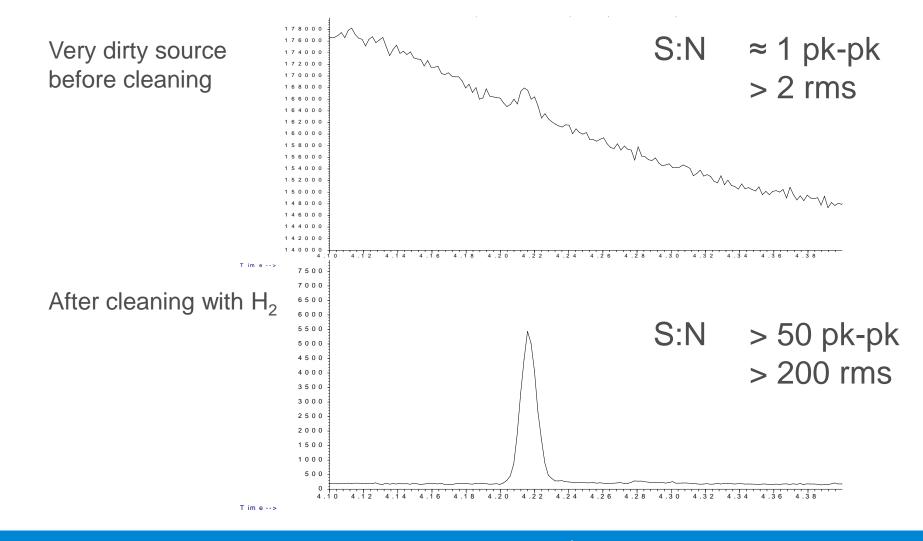
Modification to Sample Prep

- Large volume injection helps optimize LOD performance
- LVI helps reduce sample cleanup requirements
 - 130mL sample with 18mL DMC extraction
 - Microwave Extraction with dilute to volume and direct injection
 - Validate recovery per method performance requirements


Chlorinated Solvent Reduction Profile Improvements Through Technology

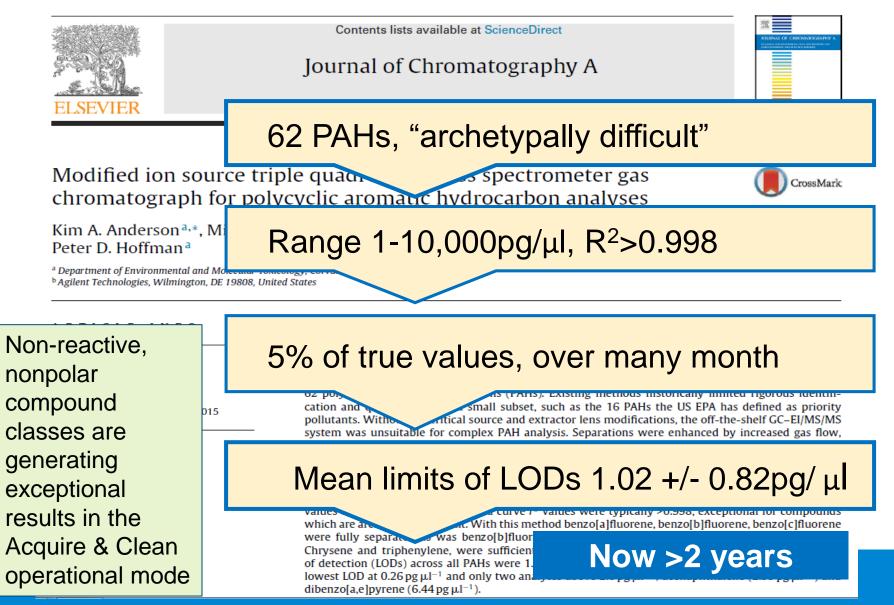
Financial Benefit: **\$200K** in the first twelve months!

GC/MS Quad Source that "Cleans Itself" Continually Driving Technology Innovation



Self-cleaning ion source

- "Clean Only" or "Clean and Acquire" operation
- Consistent response for extended period of time
- Reduces or eliminates downtime for manual source cleaning
- As Option or Upgrade for single and tandem quad GC/MS systems


Cleaning Restores Analyte (OFN) Detection Comparable to manual cleaning

Verified Performance PAH Analysis – Clean and Acquire

Journal of Chromatography A, 1419 (2015) 89-98

MELA 2017 1 November 2017

N-Nitrosamines in Drinking Water GC-MS/MS with HES (all concentrations in ng/L)

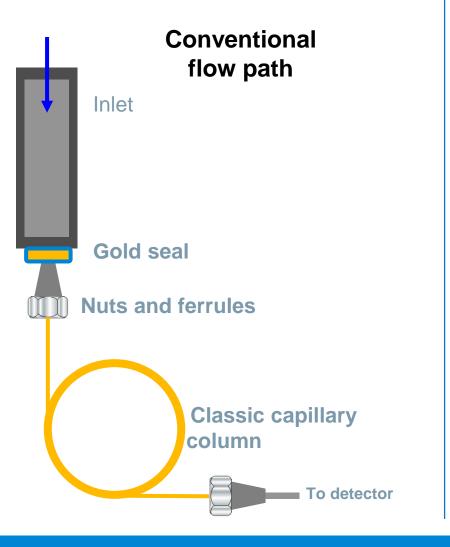
Name	TS	RT	Avg. Conc.	Std. Dev.	MDL	LQQ	LOD	EPA MRLs	Noise	S⁄ N	Avg. Resp	Resp. RSD(%)
NDMA	1	7.15	1.62	0.0471	0.141	0.471	0.141	1.6	5	228	3275	3.9
NMEA	2	8.28	1.48	0.0287	0.086	0.287	0.086	1.5	3	258	2073	4.1
NDEA	3	9.13	1.43	0.0579	0.174	0.579	0.174	2.1	3	Inf.	1347	5.3
NDPA	4	11.08	1.29	0.1423	0.427	1.423	0.427	1.2	10	214	238	8.9
NMOR	5	11.47	1.19	0.0411	0.123	0.412	0.123		3	1912	2478	3.9
NPyr	5	11.64	1.32	0.124	0.372	1.240	0.372	1.4	1	1525	375	7.5
NPip	6	11.85	1.41	0.045	0.135	0.450	0.135	1.4	3	216	1206	3.5
NDBA	7	12.56	1.47	0.0595	0.178	0.595	0.178	1.4	8	Inf.	928	3.8

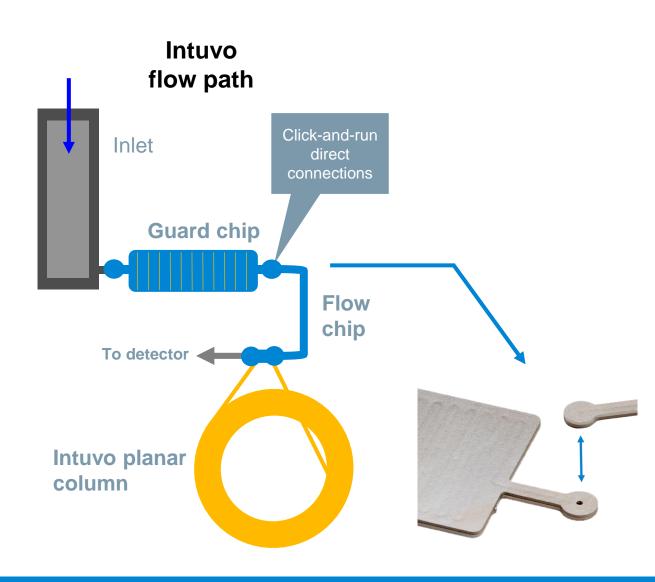
MDL/LOQ/LOD at 95% confidence level: Calculated from 8 replicates at 1.25 ng/L using 0.5 μ L injections

Performance

- Enhanced EI sensitivity meets, and exceeds, the requirements of EPA Method 521
 - Excellent alternative to the method specified PCI MS/MS Ion Trap systems.
- Excellent detection levels ranging from 0.08 – 0.4 ng/L
 - Well below the required levels with only a 0.5 µL sample injection.

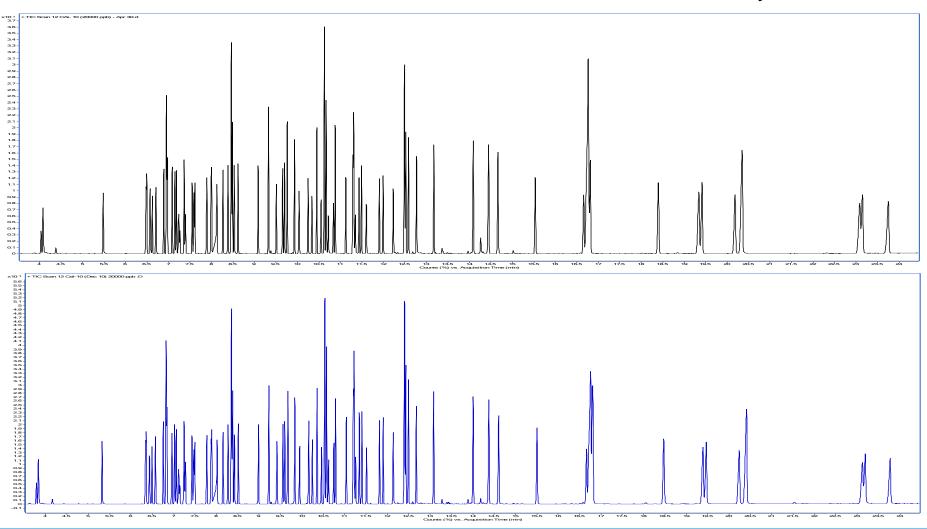
Smaller injection volume led to less sample on column, less matrix and longer time between system maintenance


LISTENING TO CUSTOMERS: THE SPARK FOR INNOVATION


B Alape B Fault B Fault

MELA 2017 1 November 2017 14

Innovating the GC Flow Path Intuvo Model 9000 Gas Chromatograph



Innovating a New Path to GC Productivity Modular A new approach to GC Intuvo flow chips . Disposable **Guard chip** Ferrule-free click-and-run connections No-trim column Agilent Intuvo GC Columns Direct heating

Seamless Method Migration to Intuvo Preserving method and SOP investments

83 SVOC by US EPA 8270

1 November 2017

Next Generation of LC/TQ "Fit for Purpose"

SMALL IS BIG AGAIN!

Expectations for LC/TQ performance

- Bench space requirements
- Robust, reliable and accurate measurements, day in day out
- Minimal downtime for maintenance
- Intuitive and user-friendly
- Quickly achieve ROI


Ultivo LC/TQ

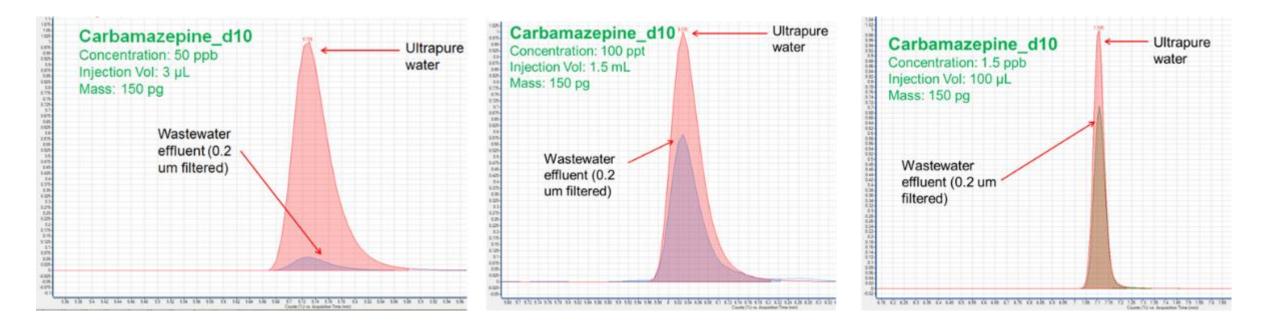
Ultivo "Fit for Purpose" LC/TQ

Diagnostics – Provide "realtime" information concerning stability/usability of the system

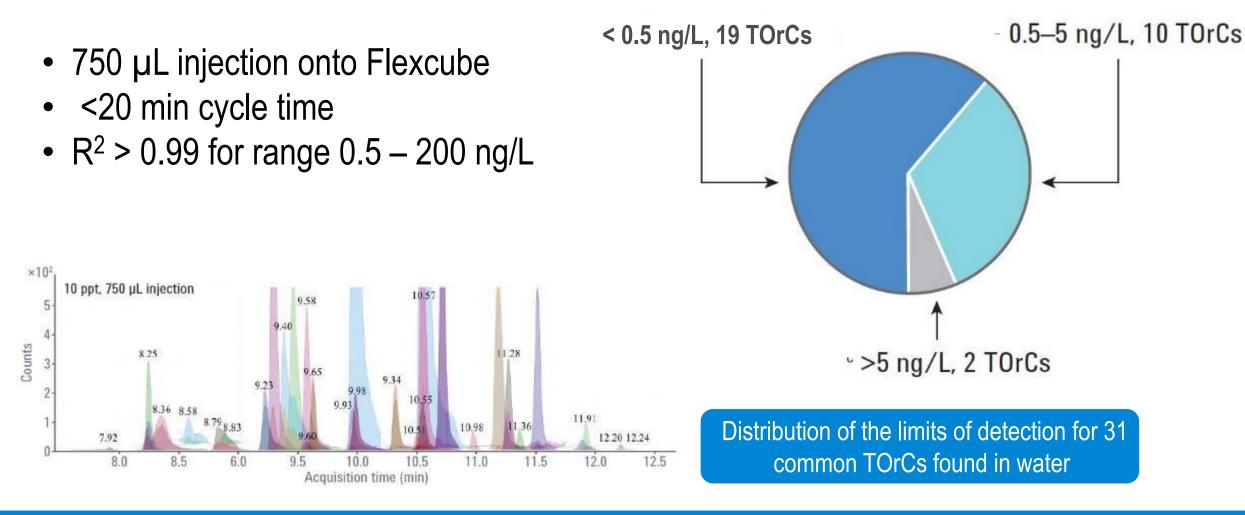
Form Factor – Size/ Footprint, stackability, external appearance

Reliability – Overall (mean time to service), sample throughput, consumable components (TMP, ion injector)

Performance – Sensitivity, selectivity, positive/ negative switching, mass range / resolution, matrix

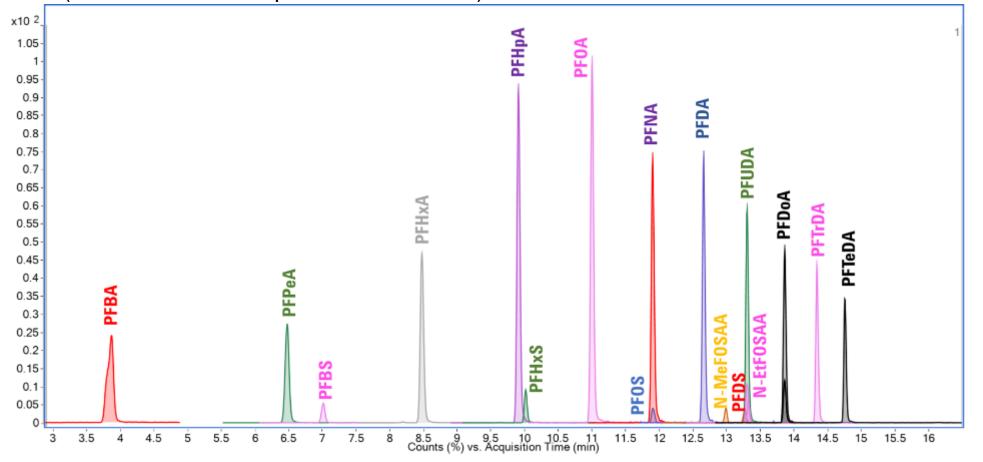

Ease-of-Use - Initial set-up / post-sales support (e.g. method development), training, fit into workflow

Total Cost of Ownership – Initial cost, reduced maintenance cost, gas usage, noise reduction, training

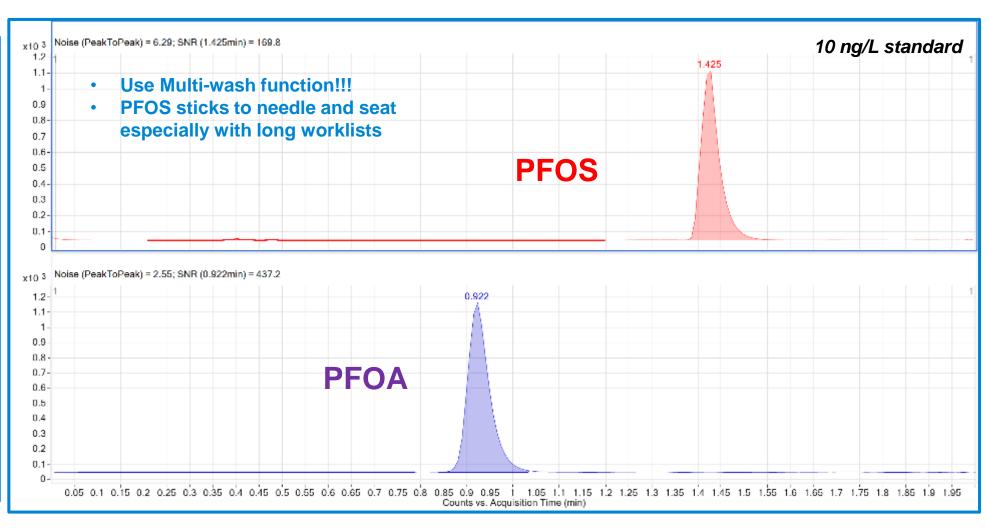

Analysis of Trace Organic Contaminants Ion Suppression Comparison by Sample Prep Method

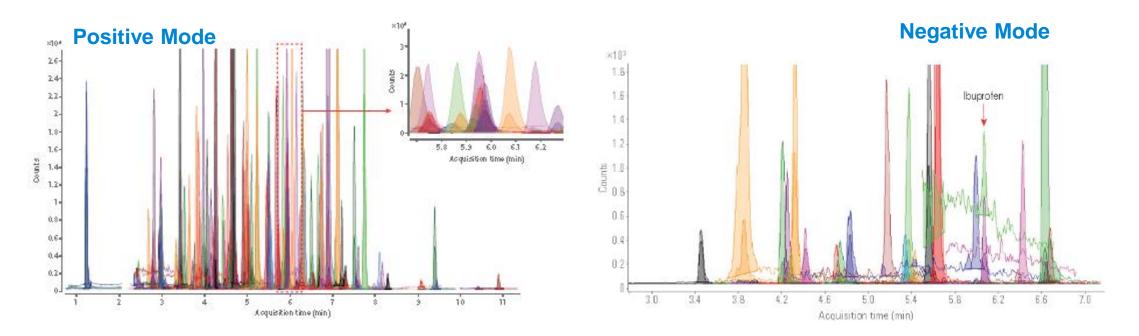
Conventional SPE Mass on Column :150 pg Online SPE Mass on Column :150 pg Direct Injection Mass on Column :150 pg

> Dr. Shane Snyder University of Arizona


Analysis of Trace Organic Contaminants in Drinking Water FlexCube Online SPE + 1290 II LC + Ultivo Triple Quad LC/MS

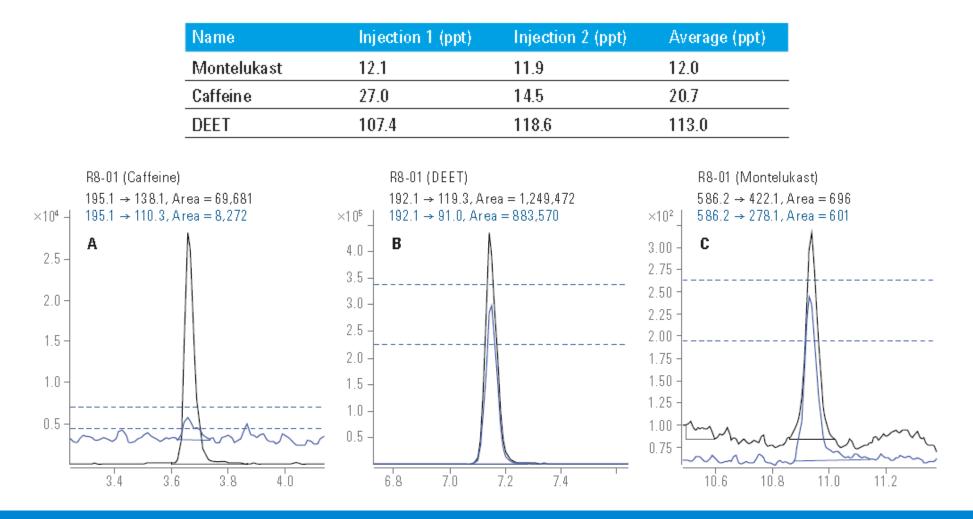
Analysis of PFAS in Drinking Water with Ultivo EPA Method 537


Analysis of 17 PFASs in drinking water with <0.1 ng/mL DLs in extract (includes all 14 compounds in EPA 537)


Analysis of PFOA/PFOS Direct Injection; Rapid Analysis (1290 II UHPLC + 6495 LC-MS/MS)

Liquid Chromatograph	Agilent 1290 Infinity II Binary Pump
Mass Spectrometer	Agilent 6495 triple quadrupole LC-MS
Analytical Column	Agilent Poroshell 120 EC-C18; 3.0 x 50mm; 2.7um
Delay Column	Agilent Eclipse Plus C18, 4.6 x 50mm; 3.5um
Mobile Phase	A: Water+5mM Amm. Acetate B: Acetonitrile
Run Time	2 min
Injection Volume	80 uL (Water)

Key Application for LC/TQ Low Level Detection of PPCPs using Model 6495



Performance

Detection at concentration <10 ppt without sample enrichment. Calibration range from 2 to 1,000 ppt (R² >0.995 for most compounds) Accuracy 80–120%

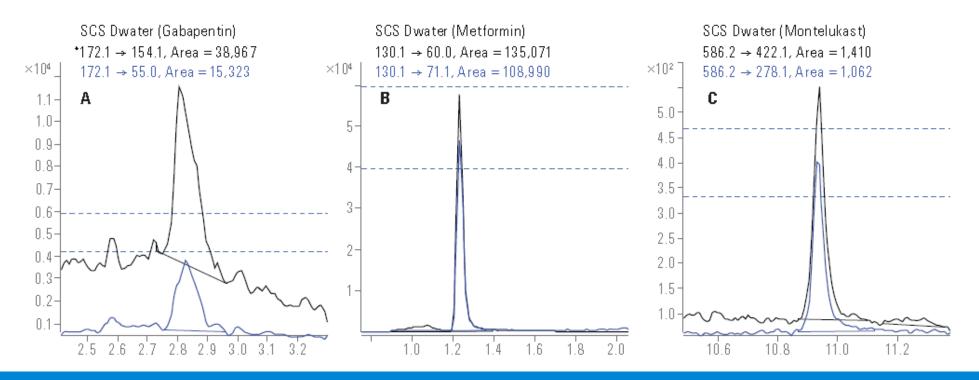
PPCPs Identified Positive Ion Mode Remote Source Water (>10ppt)

PPCPs Identified Urban Source Water (>10ppt)

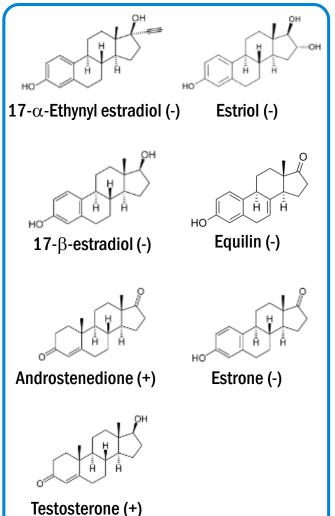
Name	Injection 1 (ppt)	Injection 2 (ppt)	Average (ppt)
10,11-dihyd ro-10-	903	861	882
hydroxycarbamazepine			
Amitriptyline metabolite	30	30	30
Amitriptyline	29	29	29
Atenolol	2,599	2,212	2,405
Atomastatin	40	37	39
Atrazine	43	41	42
Benzoylecgonine	221	206	214
Bupropion	169	154	162
Caffeine	1,473	1,241	1,357
Carbamazepine 10,11 epoxide	38	36	37
Carbamazepine	214	229	221
Carisoprodol	27	28	28
Clopidogrel carboxylic acid	223	204	214
Cocaine	37	35	36
Codeine	67	67	67
Cotinine	98	90	94
DEET	503	570	536
Desmethylcitalopram	107	88	97
Desmethylvenlafaxine	744	827	786
Dextromethorphan	31	42	36
Diltiazem	55	61	58
Diphenhydramine	205	205	205
Ecgonine methyl ester	39	39	39
ED DP	102	100	101
Enythromycin	44	44	44
Erythromycin-anhydro	38	31	34
Escitalopram	192	179	186
Fluoxetine	30	28	29
Gabapentin	>>1.000	>>1,000	>>1,000
Hydrocodone	28	24	26
Hγdroxγbupropion	260	253	257
Ketoprofen	17	15	16
Lamotrigine	868	1,013	940
Levorphanol	213	205	209
Lidocaine	360	325	343

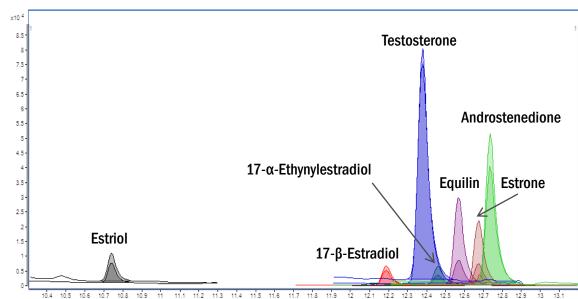
Name	Injection 1 (ppt)	Injection 2 (ppt)	Average (ppt)
Loratadine	10	10	10
Loraz epam	137	143	140
Meprobamate	160	147	154
Metformin	3,956	3,956	3,956
Methadone	58	39	49
Methamphetamine	259	315	287
Metoprolol	295	334	315
Modafinil	16	14	15
Monoethylglycinexylidide	28	31	30
Montelukast	12	12	12
Norquetiapine	32	25	28
Norsertraline	32	24	28
Oxazepam	29	27	28
Oxcarbazepine	45	42	44
Oxycodone	95	83	89
Oxymorphone	17	14	15
Phentermine	117	117	117
Pregabalin	440	445	442
Primidone	77	58	68
Propranolol	70	71	70
Pseudoephedrine	211	236	223
Ritalinic acid	111	127	119
Sertraline	47	44	46
Sotalol	68	72	70
Sulfam ethazin e	10	13	11
Temazepam	89	83	86
Thiabendazole	37	43	40
Tramadol	708	727	717
Trazadone	35	30	33
Triamterene	100	111	106
Trimethoprim	277	321	299
Tylosin	13	10	11
Valsartan	475	517	496
Venlafaxine	446	384	415
Verapamil	11	10	11
Zolpidem phenyl-4-carboxylic acid	46	47	47

Name	Injection 1 (ppt)	Injection 2 (ppt)	Average (ppt)
Celecaxib	45	41	43
Chloramphenicol	12	12	12
Diclofenac 4-hydroxy	41	45	43
Diclofenac	237	292	265
Furosemide	400	387	393
Gemfibrazil	309	337	323
Hydrochlorothiazide	503	487	495
Ibuprofen	140	139	139
Modafinil acid	118	114	116
Naproxen	354	347	350
Phenobarbital	55	53	54
Phenytoin	126	121	123
Pravastatin	57	52	54
Sulfamethoxazole	573	582	577
Triclocarban	40	39	39
Triclosan	242	268	255


Positive Ion Mode

Positive Ion Mode

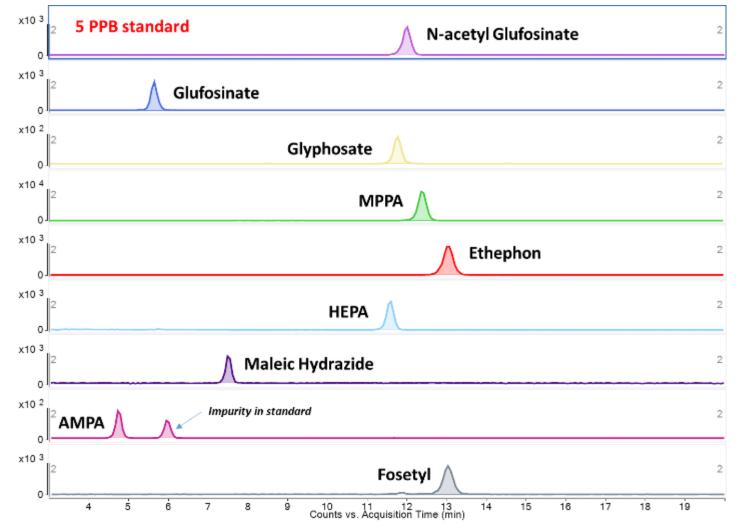

PPCPs Identified Positive Ion Mode Local Tap Water (>10ppt)


Name	Injection 1 (ppt)	Injection 2 (ppt)	Average (ppt)
Gabapentin	20.7	19.6	20.2
Metformin	31.2	30.1	30.6
Montelukast	12.7	12.3	12.5

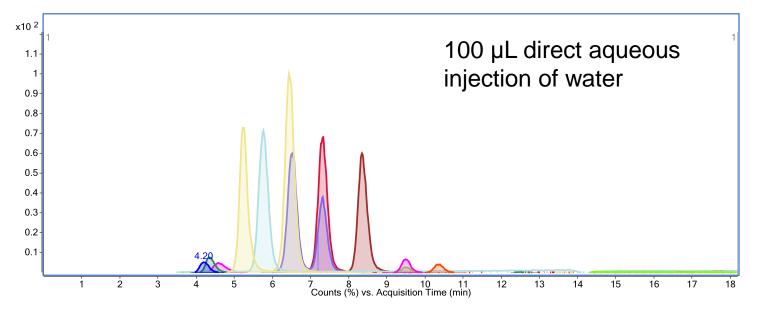
Analysis of Hormones in Drinking Water 5 ng/L (testosterone) to 17.5 ng/L (EE)

Counts vs. Acquisition Time (min)

Compounds	LLOQ (ng/L)	IDL (ng/L)	R ²	Precision (%RSD, n = 8)	%Accuracy
Estriol		0.168	0.997	0.81 - 10.6	93.6 – 113.6
17β-Estradiol	< 0.5	0.202	0.996	0.73 – 13.7	87.5 – 120.3
Testosterone	< 0.1	0.031	0.994	2.09 - 10.3	88.8 – 114.5
17α- Ethynylestradiol	1.75	0.78	0.996	2.50 - 16.5	95.3 - 107.2
Equilin	< 0.2	0.022	0.997	3.00 - 5.21	88.9 – 115.1
Estrone	< 0.2	0.043	0.996	2.57 – 9.41	91.2 – 115.1
Androstenedione	< 0.1	0.026	0.995	1.48 - 9.07	89.2 – 107.2



Analysis of 9 Polar Pesticides in Water - Glyphosate Direct Aqueous Injection with LC-MS/MS



6495 Triple Quad LC/MS ESI Negative LOD: 0.2 ppb for Glyphosate; lower for

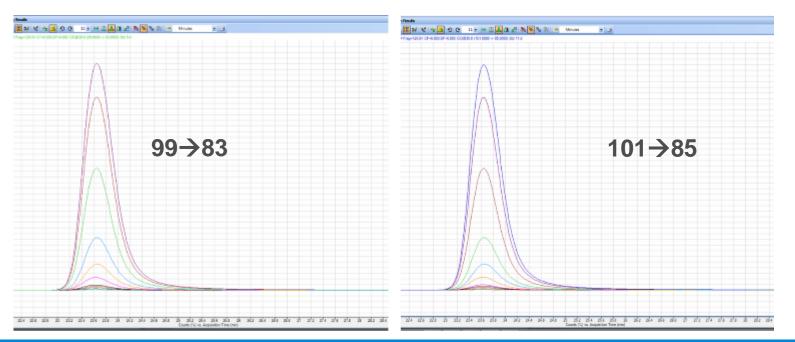
Haloacetic Acids and Bromate in Water by IC-MS/MS EPA method 557 (Metrohm 950 IC + Agilent 6490 Triple Quad LC/MS)

Analyte	MDL (µg/L)	MDL (µg/L) in USEPA Method 557
BrO ₃ -	0.0051	0.020
MCAA	0.041	0.20
MBAA	0.014	0.064
MIAA	0.14	-
DCAA	0.010	0.055
BCAA	0.037	0.11
DAL	0.44	0.038
DBAA	0.060	0.015
CIAA	0.024	-
BIAA	0.013	-
DIAA	0.010	-
TCAA	0,030	0.090
BDCAA	0.11	0.050
CDBAA	0.10	0.041
TBAA	0,10	0.067

Advantages:

- Method runtime (20 min) is a third of EPA method
- MDLs are better in most cases than EPA method
- Includes 4 lodo-HAAs not in EPA method

金融的	Contents lists evallable at ScienceOinst	
2200	Journal of Chromatography A	
FI STVIER	journal homepage: www.elsevier.com/locate/chroma	
	nal Engineering, University of Arizona, 1132 E. Jamas E. Regers Wey, Warshberger 116, Tacson, 42 (872).	
United Starsp	die Rd., Milleningenn, 255 19828, Underd States	


Wu et al. (2017), "Analysis of haloacetic acids, bromate and dalapon in natural waters by ion chromatography-tandem mass spectrometry", J Chrom A, 100-107

Analysis of Perchlorate by IC-MS/MS in Potable Water EPA method 332.0 (Metrohm 950 IC + Agilent 6470 LC-MS)

Direct aqueous injection with 100 µL water sample Isocratic elution with 10.6 mM sodium carbonate and 25% ACN MRL: 0.1 ppb in drinking water (Round Robin Challenge Matrix)

MS/MS allows for elimination of sulfate interference that occurs with MSD or conductivity detector

Thank you Let's Continue the Conversation

DREAN BIGGER

MELA 2017 1 November 2017