Understanding Proficiency Testing
Statistical Analysis and Evaluation

Presented by Craig Huff
Statistical Analysis and Evaluation of Population Data- Commonly Utilized Models

- NELAP (TNI)*
- Z- Scoring
- Pure Study/Population Approach

* Most recognized in US and focus of today’s presentation
NELAP (TNI)

- Accepted by most states – wholly or in part
- Data evaluated using regression equations or fixed limits
- Information published in the TNI FoPT tables
- NPW Acceptance Limits represent $\sim \pm 3$ standard deviations
- DW Acceptance Limits represent $\sim \pm 2$ standard deviations
- Utilizes robust mean & robust standard deviation
Mean and Standard Deviation- Robust vs Arithmetic Techniques

- **Arithmetic** = Simple “Average” and “Standard Deviation”
 - Used for sample sizes of 7 to 20 samples
- **Robust** = Multi-iterative, bi-weighted¹ mean and standard deviation
- What does “bi-weighted” really mean?
 - Begins with the median of the data population
 - Assigns a weighting factor to each data point with each iteration based on “distance” from the median
 - 15 iterations conducted
 - Utilized for sample sizes of 20 or more values
- **Why use Robust technique?**
 - Minimizes the effect of data outliers on the mean and standard deviation

¹. “A Bi-weight Approach to the One-Sample Problem”- Dr. Karen Kafadar
Outliers – Determination and Treatment

• **Grubb’s Test** (Grubbs 1969 and Stefansky 1972) is used to detect a single outlier in a univariate data set that follows an approximately normal distribution.

 Grubbs' test is defined for the hypothesis:

 H0: There are no outliers in the data set

 Ha: There is exactly one outlier in the data set—*(multiple iterations may be conducted)*

 Test Statistic: The Grubbs' test statistic is defined as:

 \[G = \max |Y_i - \bar{Y}| \]

 \[s \]

 with \(\bar{Y} \) and \(s \) denoting the sample mean and standard deviation, respectively. The Grubbs' test statistic is the largest absolute deviation from the sample mean in units of the sample standard deviation.

 Note: Outlier testing is utilized only when Arithmetic techniques are used to determine population means and standard deviations.

 Used for sample sizes of 7 to 20 samples—No more than 20% of the values in a data set may be classified as outliers.
PT Regression Equations vs. Fixed Limits: Where do they come from and how were they derived?

• Exist within the TNI FoPT Tables (excerpt from TNI NPW FoPT table below)

<table>
<thead>
<tr>
<th>Matrix</th>
<th>EPA</th>
<th>NELAC</th>
<th>Analyte 1,2</th>
<th>Conc Range</th>
<th>Acceptance Criteria 3,4,5,6</th>
<th>NELAC PTRL 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Code</td>
<td>Code</td>
<td></td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nutrients</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>NPW</td>
<td>0031</td>
<td>1515</td>
<td>Ammonia as N</td>
<td>1.0 to 20</td>
<td>0.9923 0.0567 0.0583 0.0914</td>
<td>0.60</td>
</tr>
<tr>
<td>NPW</td>
<td>0032</td>
<td>1810</td>
<td>Nitrate as N</td>
<td>2.0 to 25</td>
<td>0.9975 -0.0005 0.0506 0.0642</td>
<td>1.50</td>
</tr>
<tr>
<td>NPW</td>
<td>1820</td>
<td>Nitrate-nitrite as N</td>
<td>2.5 to 25</td>
<td>0.9957 -0.0010 0.0509 0.0400</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>NPW</td>
<td>1840</td>
<td>Nitrite as N</td>
<td>0.4 to 4.0</td>
<td>1.0017 -0.0030 0.0377 0.0250</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>NPW</td>
<td>0033</td>
<td>1870</td>
<td>Orthophosphate as P</td>
<td>0.5 to 5.5</td>
<td>±15% fixed acceptance limit</td>
<td></td>
</tr>
<tr>
<td>NPW</td>
<td>0034</td>
<td>1795</td>
<td>Total Kjeldahl-Nitrogen 10</td>
<td>3.0 to 35</td>
<td>0.9701 0.2283 0.0680 0.1906</td>
<td>1.95</td>
</tr>
<tr>
<td>NPW</td>
<td>0035</td>
<td>1910</td>
<td>Total Phosphorus</td>
<td>0.5 to 10</td>
<td>0.9932 0.0084 0.0506 0.0254</td>
<td>0.35</td>
</tr>
</tbody>
</table>

• Developed using data from multiple PT providers, EPA and method specific data – multiple methods combined
How are PT Acceptance Limits derived from TNI Regression Equations

- Are your results “Acceptable” or “Not Acceptable”
- For NPW... Acceptance Limits are set at ± 3 Std Dev as calculated from the “predicted mean”

Eg. *Nitrite as N*; \(a = 1.0017, b = -0.0030, c = 0.0377, d = 0.0250 \)
Assume PT sample assigned value = 1.00 mg/L
Predicted Mean = \((1.00*1.0017)+(-0.0300) = 0.999 \text{ mg/L}\)
Predicted Std Dev = \((1.00*0.0377)+0.0250 = 0.0627 \text{ mg/L}\)

Acceptance Limits = \(0.999 \pm (3*0.0627)\) or **0.811 – 1.19 mg/L**

Note: Analytical method bias is accounted for where regression equations are prescribed.
Assigned Values—How are they determined?

- Actual "made-to" value as determined by weights/measurements (taking into account substrate purities).
- Measured means (established by the PT provider)
- PT Study mean (eg...where only “c” & “d” factors are supplied on the FoPT table)
- Must be compliant with Verification, Homogeneity and Sample Stability criteria (VHS)
Data Modality – What is it and how is it handled?

- Multi-modal distributions can occur where two or more data distribution scenarios are exhibited within a data set.
- Methods for detecting and treating these situations must be approved by the PT provider’s Proficiency Testing Provider Accréditor (PTPA)
- When detected, the PT provider must assess the cause, segregate the data and evaluate separately...or invalidate the analyte/sample in that PT study

Some Potential Causes of Multi-Modality:
 - Prep/analytical method bias (i.e., two or more methods may not be equivalent)
 - PT sample(s) inhomogeneity (within and/or between the samples)
 - PT sample(s) may have exhibited instability during the course of the study
PT Sample Concentration and it’s Impact on Acceptance Limits

- Regression-based acceptance limits:
 Typically change as a percentage of the assigned value over the PT concentration range (generally widen as the concentration approaches the PTRL)

- Fixed acceptance limits...need I say more
Monitoring and Trending PT Performance-Tools You Can Utilize

- **PT Performance and Exception Reports**
 - Summarizes overall performance -by analyte or by comparison to study population

- **Custom Export Generator**
 - Define and save the data you want...when you want it

- **Z-Scores (a powerful trending tool)**
 - Know when you have opportunity for improvement—before you experience a “not acceptable” evaluation
Other Sources of Valuable Information

- TNI Website (FoPT Tables, Laboratory Accreditation, PT Program Info.)
 www.nelac-institute.org

- ISO 17025
- ISO Guide 34
- ISO Guide 43
- ERA
 www.eraqc.com

Thank You

Questions?