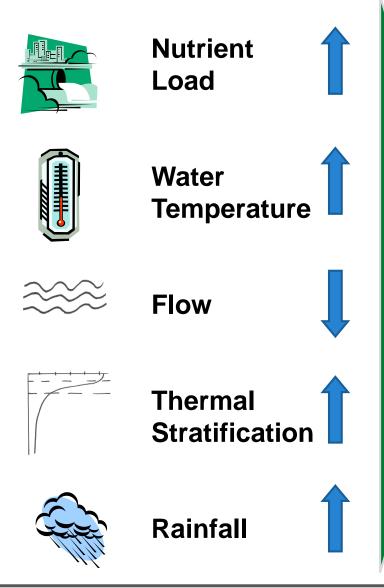


Thermo Fisher SCIENTIFIC

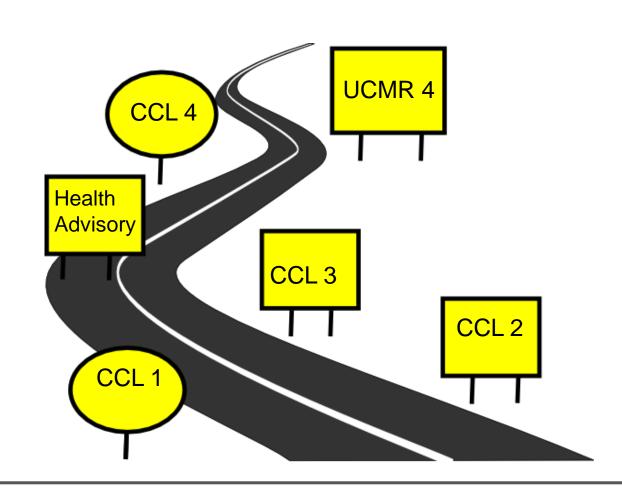

Microcystins and the Challenges of the Unknown Analysis of Algal Toxins Using LC-MS/MS

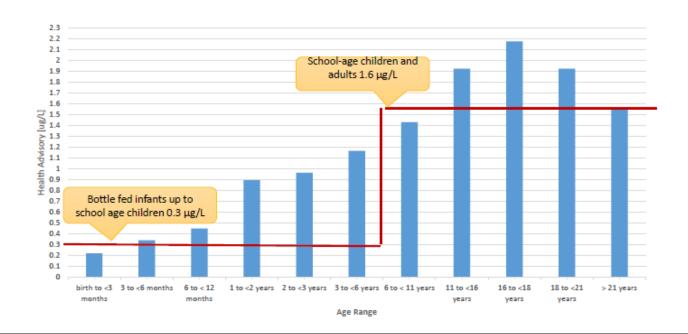
Dr. Judy Westrick and Dr. Johnna Birbeck Wayne State University Lumigen Instrument Center October 8, 2019

Overview

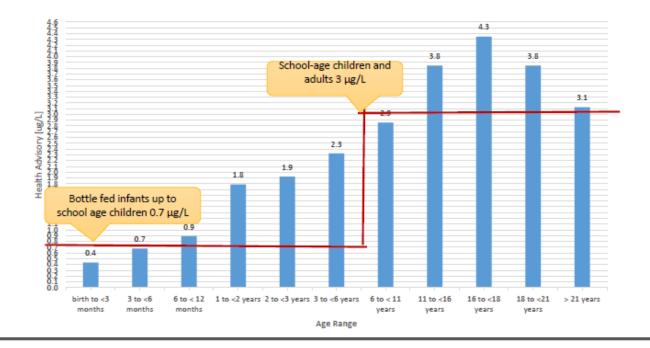
- Why do freshwater Harmful Algal Blooms (HABS) happen?
- Regulation and Policy The Road Traveled
- Anatoxin and Cylindrospermopsin, EPA Method 545
- Microcystin, EPA Method 544
- New Robust online concentration LC/MS/MS Methodology Targeted MCs
 Untargeted MCs
- Conclusion

The Perfect Storm...




Regulation and Policy - The Road Traveled

- General Flow of the Safe Drinking Water Act
 - Contaminant Candidate List (CCL I, II, III, and IV)
 - Unregulated Contaminant Monitoring Rule (UCMR IV)
 - Determine if any contaminant needs a standard
 - Develop regulation
 - Six year review
- Drinking Water Microcystin and Cylindrospermopsin Health Advisories
- Informal non-regulatory guidance for unregulated drinking water contaminants to assist federal, state and local officials, and public water systems in protecting public health.


Microcystin Drinking Water Health Advisory

- Microcystin LR is considered a surrogate for all microcystin congeners (toxicology)
- Children < 6 years, drink 5x more water to body mass
- Most sensitive endpoint is liver damage
- Lowest Observed Adverse Effect Level (LOAEL) 50 µg/Kg/d
- Uncertainty Factor 1000 (intra -10; inter -10; database -10^{0.5}; LOAEL-NOAEL 10^{0.5})
- Short term 10 day (no lifetime or carcinogenic value derived)

Cylindrospermopsin Drinking Water Health Advisory

- Cylindrospermopsin and does not include the two congeners.
- Children < 6 yrs, they drink 5xs more water to body mass.
- Most sensitive endpoint is kidney damage.
- No Observed Adverse Effect Level (NOAEL) 30 ug/Kg/d
- Uncertainty factor 300 (intra -10; inter 10; and data 10^{0.3})
- Short term 10 day (no lifetime or carcinogenic value derived)

Recreational Waters Health Advisory for Microcystin and Cylindrospermopsin

- World Health Organization
 - Most countries use both cyanobacteria cell and microcystin-LR levels
 - Cells provide for the unknown....(surrogate)

Relative Probability of Acute Health Effects	Cyanobacteria cell (cells/mL)	Microcystin-LR (ug/L)
Low	<20,000	<10
Moderate	20,00-100,000	10-20
High	100,000-10,000,000	20-2,000
Very High	>10,000,000	>2,000

US EPA Approach to Recreational Health Advisory

- No cyanobacteria cells
- Swimming Advisory: not to be exceeded on any day.
- Recreational Criteria for Waterbody Impairment: not exceeded more than 10 percent of days per recreational season to one calendar year.

Microcystis (ug/L)	Cylindrospermopsin (ug/L)
8 ug/L	15 ug/L

Cyanotoxin EPA methods used for UCMR monitoring

- EPA method 544 Determination of Microcystins and Nodularin in drinking water by SPE and LC/MS/MS
 - SPE sample prep
 - Concentrated sample detected using LC/MS/MS
- EPA method 545 Determination of Cylindrospermopsin and Anatoxin-a in Drinking Water by LC/ESI-MS/MS
 - Direct inject method using LC/MS/MS detection

Cyanotoxin LC/MS/MS workflow

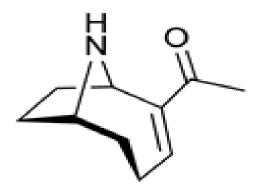
- Standards
 - How many standards are available?
 - Are any MCs certified standards available?
 - QA/QC?

- Standard Methodology
 - EPA 544 microcystins
 - EPA 545 anatoxin and cylindrospermopsin
 - Sample preparation
 - Qualifier/quantifier ratio


- Chromatography
 - Microcystins
 - Degrees of hydrophilicity
 - Matrix effects
 - Mobile Phase

- Measuring low ppt. levels of cyanotoxins
 - Concentration and clean-up
 - Optimizing chromatography
 - Online concentration

Cylindrospermopsin



Cylindrospermopsis

Aphanizomenon

Anatoxin-a

Dilochospermum

EPA Method 545

Pros

- Standard method
- Sample collection standardized
- Direct injection

Cons

- HPLC step method
- No quantifier/qualifier ratio
- No column wash in LC/MS/MS method
- Overloading column with sample

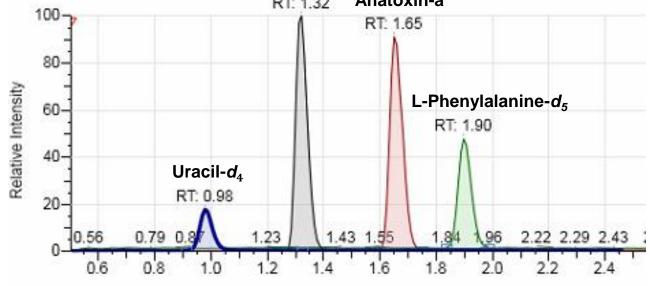
Goal: EPA Method 545 modification

 Modify EPA Method 545: Anatoxin-a and Cylindrospermopsin using LC/MS/MS.

- HPLC method converted to UPLC method.
- Include column wash step.
- Smaller injection volumes.
- Use quantifier/qualifier ion ratios for analyte verification.

EPA 545 Method development

- Mobile Phases Loading and Eluting pump
 - 100 mM Acetic acid in water
 - 100 mM Acetic acid in methanol*
- Column
 - Hypersil GOLD aQ 100 x 2.1 mm, 1.9 µm particle size
- Injection volume
 - 5 µL*
- Flow rates
 - Analytical: 0.4 mL/min gradient
- Method Run time
 - 9 minutes


Method 545: Detection Settings and Limits

Analyte	Retention Time (min)	Quantifier lons (m/z)	Qualifier lons (m/z)
Uracil-d₄	0.98	98.00	n/a
Cylindrospermopsin	1.32	194.06	176.04
Anatoxin-a	1.65	149.00	131.00
L-phenylalanine-d ₅	1.90	125.04	106.06

Analyte	Detection Limit (ppb)	Upper PIR	Low PIR	R²
Cylindrospermopsin	0.0079	132	115	0.995
Anatoxin-a	0.032	134	66	0.998

10 ppb Standard Chromatogram

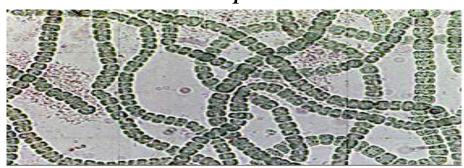
Cylindrospermopsin

Microcystin

Microcystin LR LD₅₀
50 ug/kg

Adda

OCH₃


H₂N

NH

NH

Z

Dilochospermum

MC	X	Z	R1
MC-LR	L	R	CH ₃
MC-RR	R	R	CH ₃
MC-YR	Y	R	CH ₃
MC-LF	L	F	CH ₃
MC-WR	W	R	CH ₃
D-Asp³- RR	R	R	Н
HtyR	Hty	R	CH ₃

Microcystis

What are the most prevalent Microcystins in USA?

Three types of publications

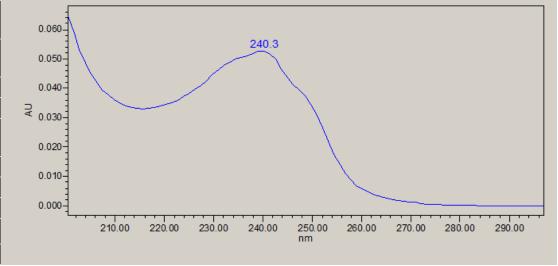
- LC/MS/MS with all available microcystins
 - Foss and Abel, 2015 (Ohio, US)
 - Szlag et al, 2019 (Michigan, US)
- High resolution mass spectrometry
 - Three studies Green Lake, Seattle, WA and Homer Lake, IL, Poplar Island, Maryland
- HPLC-PDA
 - California Studies investigating des-methyl MC-LR

The % of MC congeners detected by EPA Method 544	Number of Sites
0%-20%	6
21%-40%	0
41%-60%	2
61%-80%	3
81%-100%	11

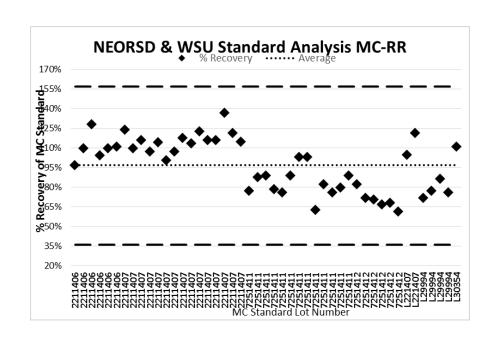
Citriglia: Water Research Project 4647: Evaluation of Methods for the Analysis of Cyanotoxins

Where are the cyanotoxins?

- Intracellular
- Particulate
- Dissolved
- Extracellular
- Conjugated

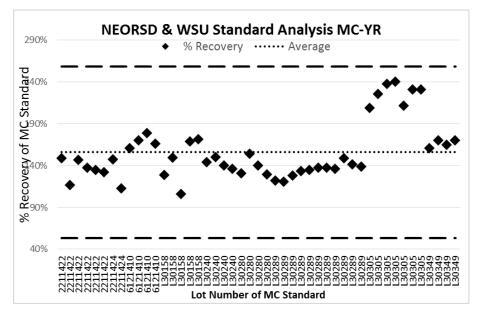


MC Concentration by Beer's Law


Absorbance =
$$\varepsilon \times \mathbf{C} \times I$$

 ISO Method 170706 recommends using the Extinction Coefficient "ε" to calculate the concentration of the stock MC standard

мс	Referenced	Reference	Extinction Coefficient
MC	Extinction Coefficient	Reference	Used
		Harada et al., 1990 /	
MC-LR	39800/36500	Honkanen et al., 1990	*39800
MC-YR	38100/41100	Blom et al., 2001	*38100
MC-RR	39800	Harada et al., 1990	*39800
		unpublished data by	
MC-LA	36500	Carmichael	36500
D-Asp3-LR	31600	Harada et al., 1990	31600
D-Asp3, E-Dhb7 MC-RR	50400	Blom et al., 2001	50400
[Dha7] - LR	46800	Harada et al., 1990	46800
MC-LW, MC-WR, MC-LF,MC-LY, MC-HtyR, D-Asp3-RR, C2D5 MC-LR		39800	
			·



Commercial Standards: Buyer Beware (1)

Purity or concentration?

Variation within vial and between lots?

Citriglia: Water Research Project 4647: Evaluation of Methods for the Analysis of Cyanotoxins

Commercial Standards: Buyer Beware (2)

Standard Purity Summary

Standard	Lot Number	Observed Impurities	% Impurities
MC-LR	02211428	DAsp ³ MCRR	1%
MC-LW	L30332	_	
MC-YR	L30158	MC-HtyR	2%
DAsp ³ MC-RR	L30311	·	
MC-HtyR	L30287	MC-YR, MC-LR,	14%
-		MC-D-Asp ³ MC-LR	
Nodularin	0614420		
MC-LY	L30309		
DAsp ³ MC-LR	L30336		
MC-LA	L30307		
MC-RR	0221407	MC-D-Asp ³ -RR	2%
MC-LF	L30373	MC-LW	2%
MC-HilR	L30372		
MC-WR	L30310		
-			

Citriglia: Water Research Project 4647

Commercial Standards: Buyer Beware (3)

[D-Asp³]MC-RR

Birbeck et al. Submitted

[D-Asp³, Dhb⁷]MC-RR

Constitutional Isomer

EPA 544: Microcystin standards

Microcystin Congener	X	Z	R1
LR	L	R	CH ₃
RR	R	R	CH ₃
YR	Y	R	CH ₃
LY	L	Υ	CH ₃
LA	L	Α	CH ₃
LF	L	F	CH ₃
LW	L	W	CH ₃
WR	W	R	CH ₃
D-Asp3-LR	L	R	Н
D-Asp3-RR	R	R	Н
HtyR	Hty	R	CH ₃
HilR	Hil	R	CH ₃

EPA Method 544

Pros

- Standard method
- Sample collection standardized
- Flexible chromatography

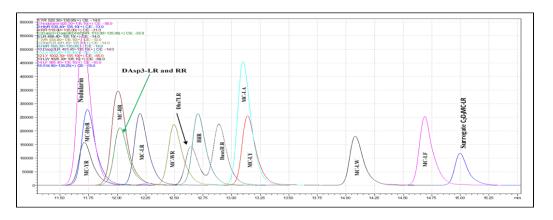
Cons

- Two day process
 - Solid Phase Extraction
 - LC/MS/MS analyses
- Loss of sensitivity
- Long method, 26 mins in which the first 10 mins no MCs are detected
- HPLC method
- Only six congeners
- No quantifier/qualifier ratio
- Large sample volumes to be shipped
- Increase chemical cost due to
 - SPE
 - HPLC method

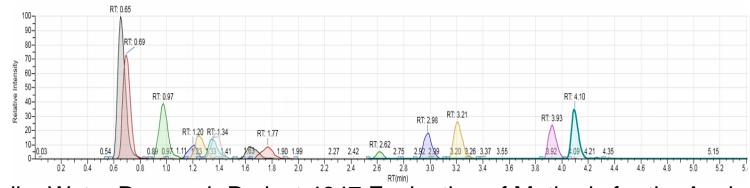
Constituents	Structure	pKa's
Carboxylic Acid	R OH	4
Arginine, R	O → PKa 2.03 NH2 pKa 9.00 NH NH NH PKA 12.10	12.0
Tyrosine, Y	pfd 17.10 Apo NH pfd 9.04 OH pfd 10.	10.10

MC-RR

$$\begin{array}{c} \text{MC-YR} \\ \\ \text{\tiny COOH} \\ \text{\tiny CH_3} \\ \text{\tiny O-CH_3} \\ \text{\tiny$$


Mobile Phase affects the Speciation of MCs

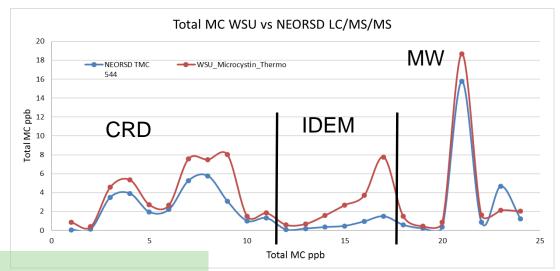
Analyte	Formic acid mobile phase, pH = 2	Ammonium formate mobile phase, pH = 6.5
Microcystin- LR	+	-, -, +
Microcystin- RR	+, +	-, -, +, +
Microcystin- YR	+	-, -, +
Microcystin- LA		-, -

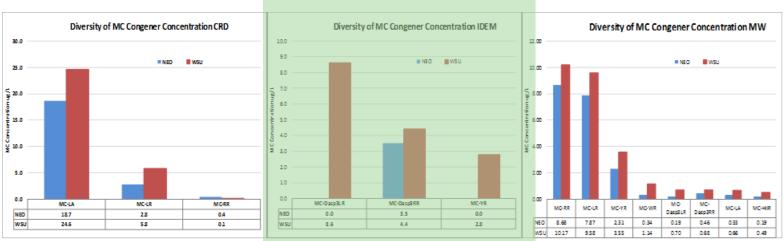

Comparison of LC/MS/MS- Method 544

Samples were extracted and prepared at NEORSD and UV₂₃₈ correction for MC-LR, RR, and YR.

Method 544 - HPLC C₈ column; Water and ammonium formate/methanol

Method 544 "Method Flexibility: HPLC C₁₈ column: Water/Acetonitrile with trace formic acid



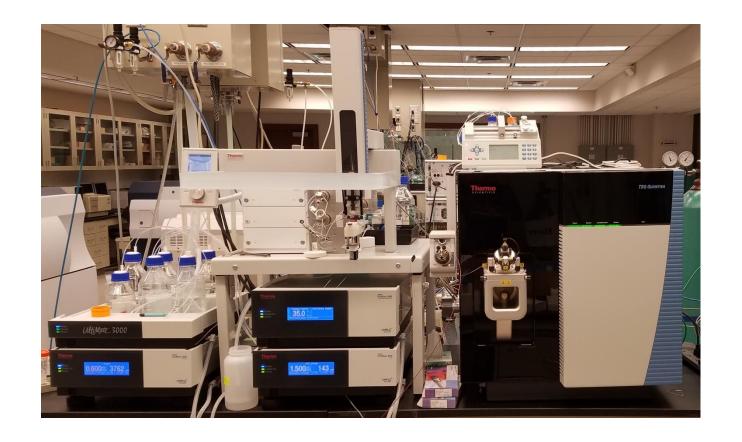

Citriglia: Water Research Project 4647: Evaluation of Methods for the Analysis of Cyanotoxins

Total MC by LC/MS/MS WSU and NEORSD?

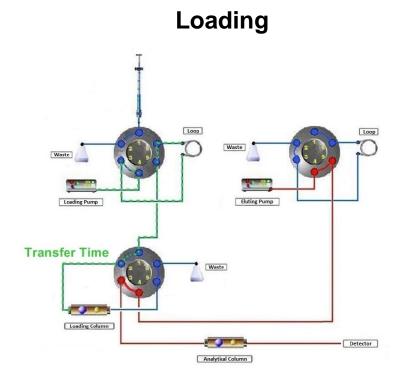
- 24 Samples with positive ELISA results were analyzed by LC/MS/MS using two different LC/MS/MS methods.
 - EPA 544 (NEO-Blue)
 - Modified EPA 544 (WSU-Red)
- Both methods have more microcystin congeners

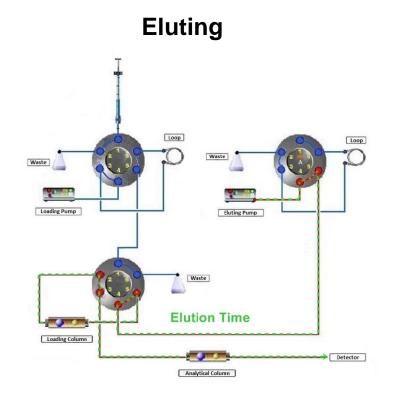
Citriglia: Water Research Project 4647: Evaluation of Methods for the Analysis of Cyanotoxins

Conclusions


- Method 544
 - Standard Variation
 - Detection limits between 5 and 10 ppt
 - Concentrations appears to be mobile phase dependent.
 - Total run time for UHPLC is 5 minutes compared to 15.0 minutes HPLC.
- Method 545
 - Decreased run time by 4 minutes
 - Included a wash step in gradient
 - Changed mobile phase B to include 100mM acetic acid

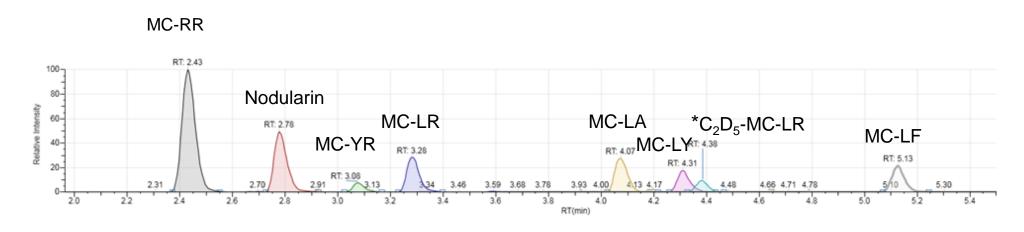
Goal: EPA Method 544 modification

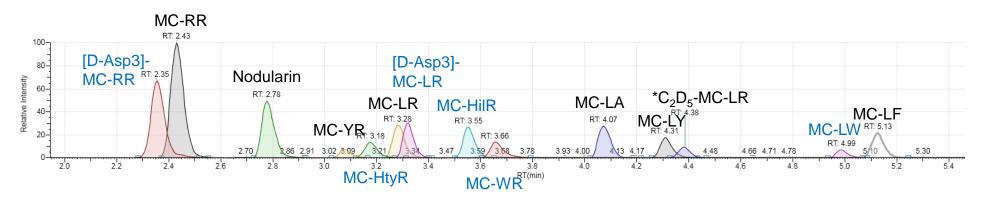

- To develop an online method for EPA Method 544: Microcystins LC/MS/MS.
 - Replace the Solid Phase Extraction step with an online concentrator.
 - Expand the method from six microcystin congeners and nodularin to twelve microcystin congeners and nodularin.
 - Use quantifier/qualifier ion ratios for analyte verification.


Instrument: Thermo Scientific™ EQuan MAX Plus™ LC-MS

- Thermo Scienfitic[™] TSQ
 Quantiva[™] Triple Quadrupole
 mass spectrometer
- Two pump/column system
 - Low pressure pump for concentration on the first column
 - High pressure pump for separation on the second column

Online concentration




Method development

- Mobile Phases Loading and Eluting pump
 - 0.1% Formic Acid in Water
 - 0.1% Formic Acid in Acetonitrile
- Columns
 - Concentrating
 - Hypersil GOLD aQ 20 x 2.1 mm, 12 µm particle size
 - Separating
 - Accucore aQ 50 x 2.1 mm, 2.6 µm particle size
- Injection volume
 - 1 mL
- Flow rates
 - Concentrator: 1.5 mL/min during loading, 0.1 mL/min after
 - Analytical: 0.6 mL/min gradient

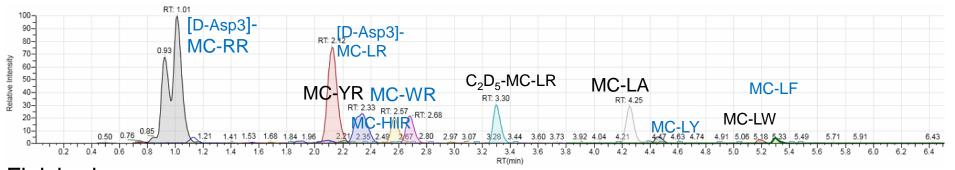
Online Concentration Chromatograph

50 ppt standard

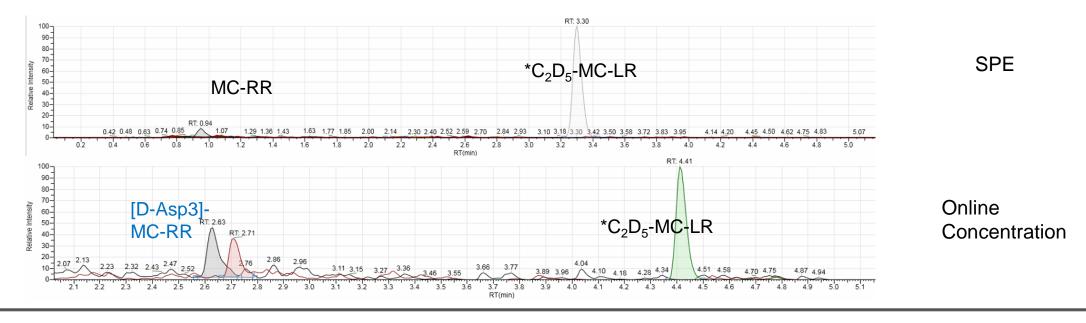
Optimized Quantifier and Qualifier Ions

Analyte	Retention Time (min)	Quantifier lons (m/z)	Qualifier lons (m/z)
[D-Asp ³]-MC-RR	2.35	135	213
MC-RR	2.43	135	440
Nodularin	2.78	135	389
MCY-YR	3.06	213	135
MCY-HtyR	3.18	135	617
MC-LR	3.28	135	213
[D-Asp ³] MC-LR	3.31	135	375
MC-HilR	3.53	135	213
MC-WR	3.63	135	1040
MC-LA	4.07	402	375
MC-LY	4.31	494	375
C ₂ D ₅ -MC-LR	4.38	135	163
MC-LW	4.99	517	891
MC-LF	5.13	852	478

Method 544 Instrument Detection Limits and Linearity

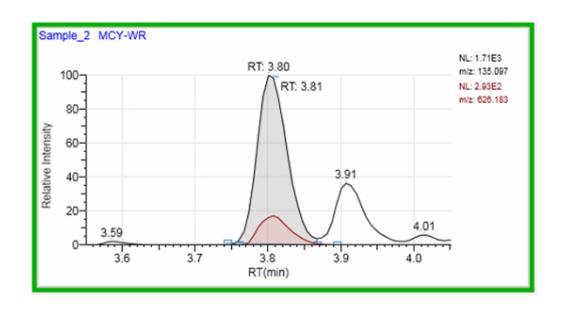

Analyte	Detection Limit (ppt)	Upper PIR	Lower PIR	R ²
[D-Asp ³]-MC-RR	0.65	119.55	84.98	0.9980
MC-RR	0.47	109.89	85.28	0.9981
Nodularin	0.99	124.52	72.14	0.9975
MCY-YR	2.46	137.81	72.88	0.9984
MCY-HtyR	1.41	147.60	73.24	0.9985
MC-LR	1.02	129.89	76.21	0.9984
[D-Asp ³] MC-LR	1.11	132.62	76.52	0.9975
MC-HiIR	1.57	142.39	59.18	0.9977
MC-WR	4.26	150.88	50.61	0.9975
MC-LA	1.38	140.43	67.72	0.9981
MC-LY	2.78	137.55	64.03	0.9976
MC-LW	2.81	143.48	69.13	0.9963
MC-LF	2.70	138.63	67.26	0.9989

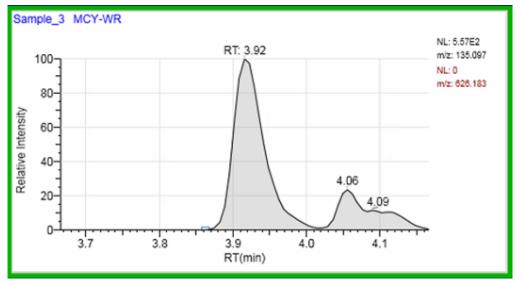
Comparison of Online method DL to EPA method 544 DL


Cyanotoxin	EPA 544 DL (ppt)	Online DL (ppt)
MC-YR	4.6	2.5
Nodularin	1.8	1.0
MC-RR	1.2	0.5
MC-LR	4.3	1.2
MC-LA	4.0	1.4
MC-LY	2.2	2.8
MC-LF	3.4	2.7

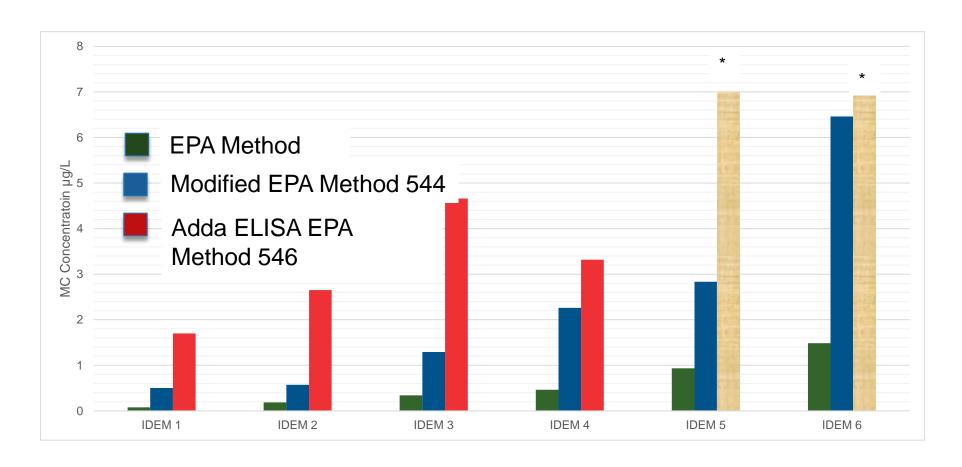
Through plant study: online concentrator vs SPE

Raw Water


Finished

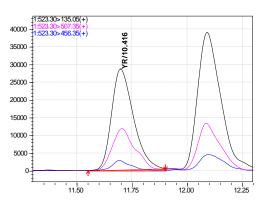


SPE

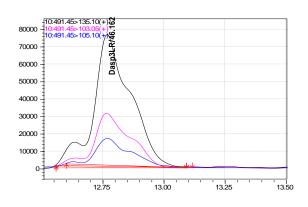

Why Quantifier and Qualifier lons are Important

- Sample 2 is a sample spiked with 250 ppt Microcystin WR.
- Sample 3 is a sample that does not contain Microcystin WR, but, the software is recognizing it as WR.
 - There is a 0.12 minute shift in retention and the qualifier ion is not present.

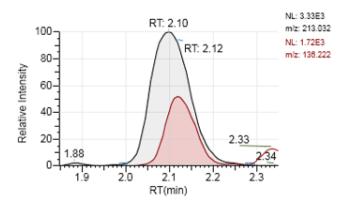
Indiana Samples Quantified by ELISA and LC/MS/MS

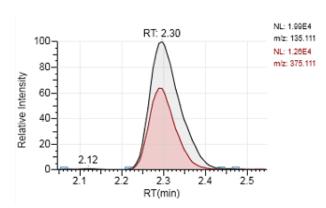


^{*} ELISA run on these samples, but readings came back high. Dilutions provided no reproducible results.


Chromatography - Indiana Sample

EPA 544 Method


MC-YR


[D-Asp3]MCLR

Modified EPA 544 Method MC-YR

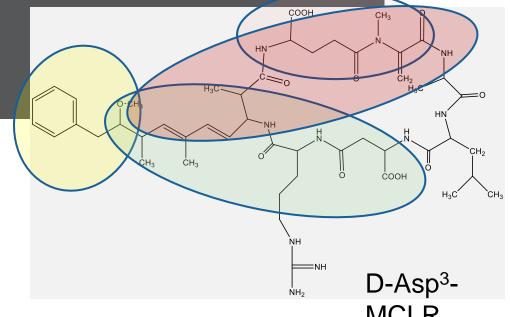
[D-Asp3]MCLR

Online Concentration LC/MS/MS

Table 1. Comparison of standard and sample ion ratio percent and retention times.

A malarta	Standard Ion	Sample Ion	Standard Retention	n Sample Retention
Analyte	Ratio %	Ratio %	time (min)	time (min)
[D-Asp ³]-MC-RR	12	14	2.56	2.50
MC-YR	68	28	3.34	3.40
[D-Asp ³]-MC-LR	63	26	3.60	3.59
MC-LY	75	84	4.64	4.64

High Resolution Mass Spectrometry


Table 2. HRMS results of the three prominent MC found in the impoundment sample and the corresponding standard.

Standard	Calculated	Found Mass	Chargo	Λ
Analyte	Mass (m/z)	(m/z)	Charge	Δ ppm
[D-Asp ³]-MC-RR	512.7824	512.7816	2	-1.5
MC-YR	523.2713	523.2715	2	0.4
[D-Asp ³]-MC-LR	491.2738	491.2738	2	0

Sample Analyte	Calculated Mass (m/z)	Found Mass (m/z)	Charge	Δ ppm
[D-Asp ³]-MC-RR	512.7824	512.7825	2	0.2
MC-YR	523.2713	523.2717	2	0.8
[D-Asp ³]-MC-LR	491.2738	491.2740	2	0.4

DAsp3-MCLR

	[D-Asp3]-	
Ion Structure	LR	IDEM 981
[Ph-CH2-CHOMe]+	135	135
[H+ Mdha-Ala]+	155	155
[C11H14O+ H]+	163	163
[Arg-NH2+ 2H]+	174	
[H+ Glu-Mdha]+	213	213
[H+ CO-Glu-Mdha]+	239	
[H+ Mdha-Ala-X]+	268	
[H+ Arg-Asp]+	272	272
[2H+ NH2-Arg-Asp]+	289	
[C11H14O-Glu-Mdha+		
H]+	375	375
[H+ Glu-Mdha-Ala-X]+	397	397
[H+ Leu-Asp-Arg]+	385	
[H+ Arg-Adda]+	470	470
[M+ 2H]2+	491	491
[H+ Mdha-Ala-X-Asp-Z]+	539	539
[H+ Asp-Arg-Adda]+	585	585
[M+ 2H-135]+	847	847
[M+ H-CO]+	953	953
[M+H]+	981	981

MCLR

Kubwabo et al., 2005

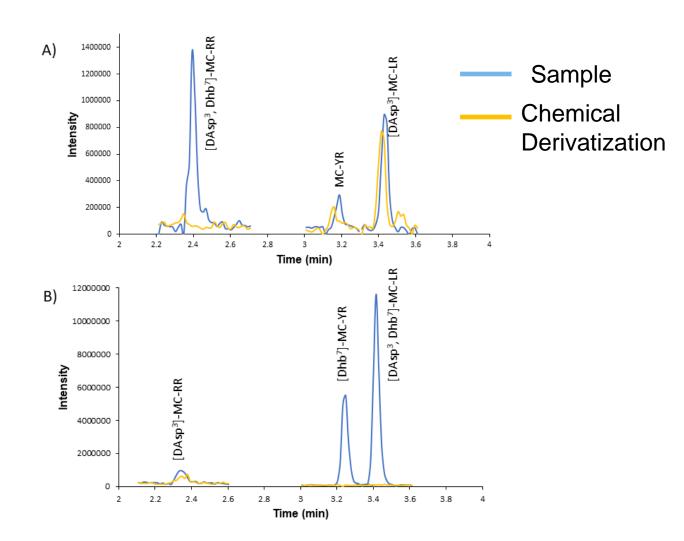
Krishnamurthy et al., 1989

₄Sano et al., 1998

ThermoFisher SCIENTIFIC

Michael Addition

- Cysteine (C) nucleophile
- $\square \alpha$ - β unsaturated ketone electrophile
- Basic condition


Miles et al 2012

Standards

[DAsp³] MCRR, MCYR and [DAsp³]MC-LR BUT [DAsp³] MCRR not present [DAsp3,Dhb7]MC-RR

Sample

[DAsp³] MCRR [Dhb⁷]MCYR [DAsp³, Dhb⁷]MC-LR

Conclusion

- Standards must be checked.
- First time Dhb MCs has been reported in USA
- First time [Dhb⁷] MC-YR has been reported
- Chromatography (Retention Time Windows)
- Qualifier/Quantifier ion ratio
- MOST IMPORTANTLY
- All experiments can be performed with online concentration LC/MS/MS.
- NO solid-phase extraction step
- Pieces can be identify without high resolution mass spectrum

Outstanding analytical methodology needs.

- Standards
- Chromatography
- Qualifier and quantifier ions.
- MC prevalence survey.
- MS Untargeted MC methodology

Acknowledgments

P30 ES020957

