

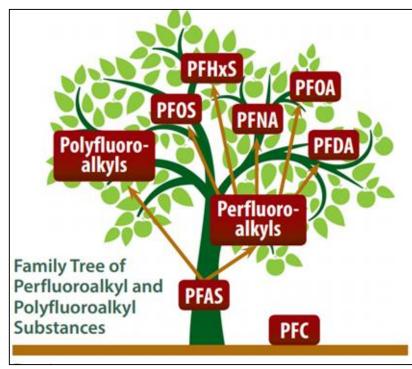
One Solution for Emerging Water Quality Topics: Per- and Polyfluoroalkyl substances.

Ruth Marfil-Vega, PhD Environmental Marketing Manager

Today's presentation

- □ Shimadzu Corporation
- General information
- Methods
- Results
- Questions

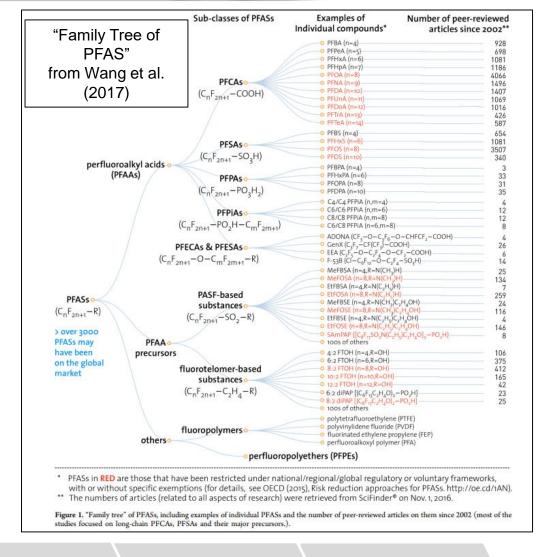
Before I start...


Thank you!

- Mark Maitret, Alicia Neiner and Katie Kohoutek for generating data at American Water – Central Lab, and the personnel at the treatment plants for collecting the samples.
- □ Brahm Prakash and Jerry Byrne for generating data at Shimadzu.

Shimadzu Corporation & Shimadzu Scientific Instruments

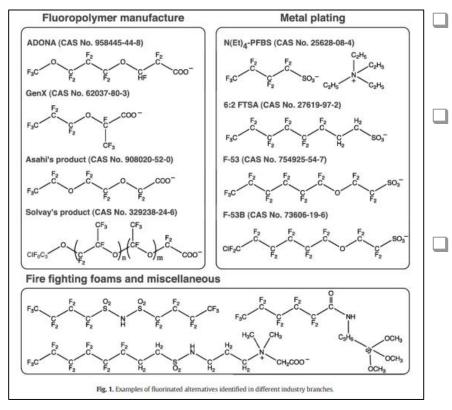
What are PFAS?


https://www.atsdr.cdc.gov/pfas/PFAS-health-effects.html

- Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals that have been used in industry and consumer products worldwide since the 1950s.
- Previously, different organizations used the acronym PFCs (from *perfluorinated chemicals*) to refer to a subset of PFAS, including PFOA and PFOS.
- PFCs also refers to perfluorocarbons, the most potent and long lasting anthropogenic green-house gases.

PFAS... only PFOA and PFOS?

PFOA and PFOS are the most studied (and known) PFAS.

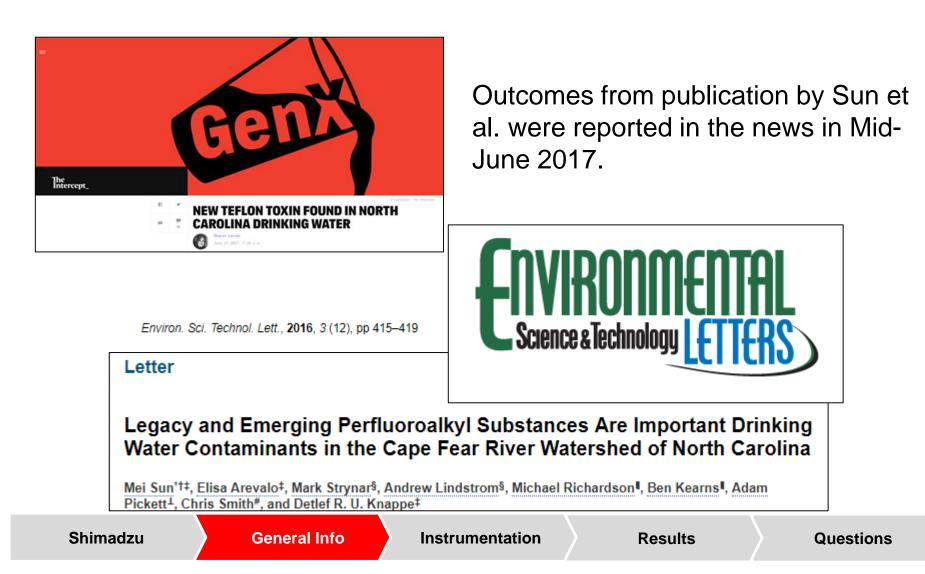


Shimadzu

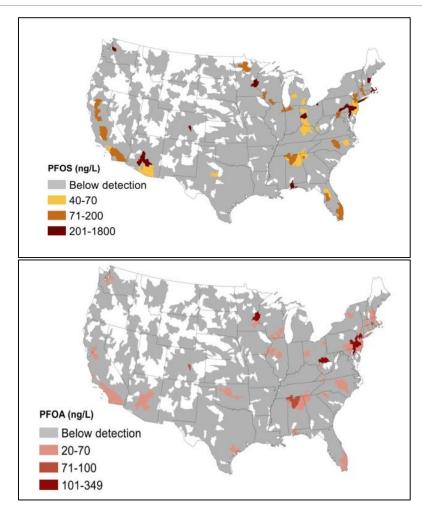
Instrumentation

Replacement compounds for PFAS

Replacement PFAS from Wang et al. (2013)


Replacement for long-chain PFAS (≥C8) and their precursors.

Chemistries include shorter-chain homologues and other (non-) fluorinated chemicals.

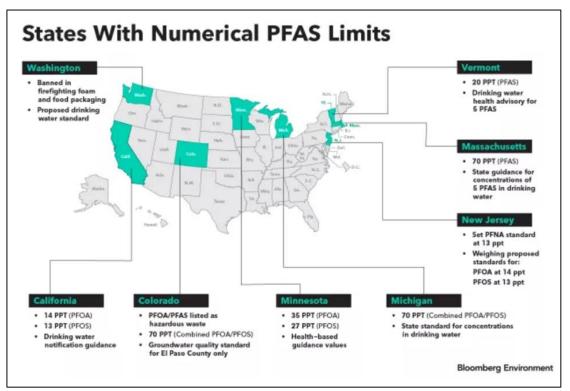

In response to concerns about impact of PFAS on the environment and human health and restrictions of production and use under the Stockholm Convention, the European Union⁽¹⁾ and US Environmental Protection Agency (EPA) ⁽²⁾.

⁽¹⁾ REACH, ⁽²⁾ PFOA Stewardship Program

The emergence of GenX

What has been done for monitoring PFAS in water in US?

Hu et al., Environ Sci Technol Lett. 2016 Oct 11; 3(10): 344-350.


- Data collection under Unregulated Chemical Monitoring Rule 3 (UCMR3) completed in 2015 with method EPA 537 (published in 2009).
- Localized hotspots for PFOA and PFOS, according to UCMR3 guidelines.

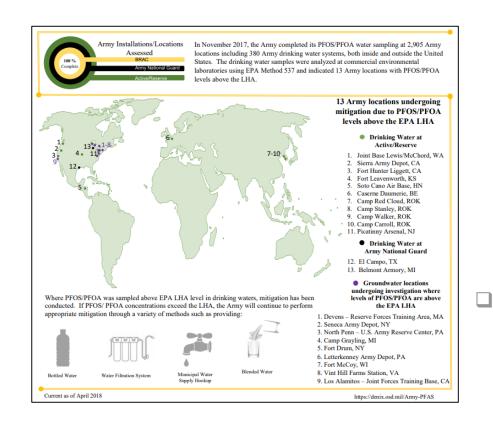
Unregulated Contaminant Monitoring Rule – EPA 537				
Compound	MRL, ng/L			
PFBS	90			
PFHpA	10			
PFHxS	30			
PFNA	20			
PFOS	40			
PFOA	20			

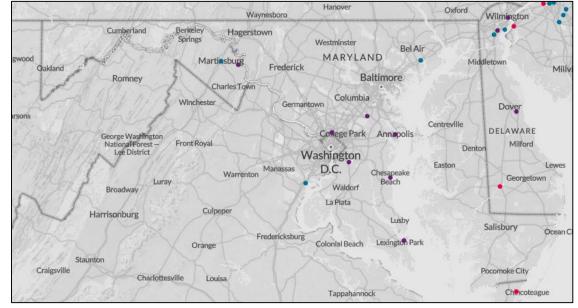
 Drinking water Health Advisory issued in 2016: 70 ng/L PFOA+PFOS.

Shimadzu	General Info	Instrumentation	Results	Questions
----------	--------------	-----------------	---------	-----------

What has happened since 2016?

Map published in 2018; new limits were released by various States in 2019.


 Individual States are establishing specific limits in drinking water at ~10-15 ng/L.


AWWA – document updated on regular basis with new limits

Laboratories are working on providing results based on standardized or inhouse developed methods, to answer specific questions from stakeholders.

What is going on in Maryland?

 Maryland does not have specific policies for PFAS in drinking water supplies.

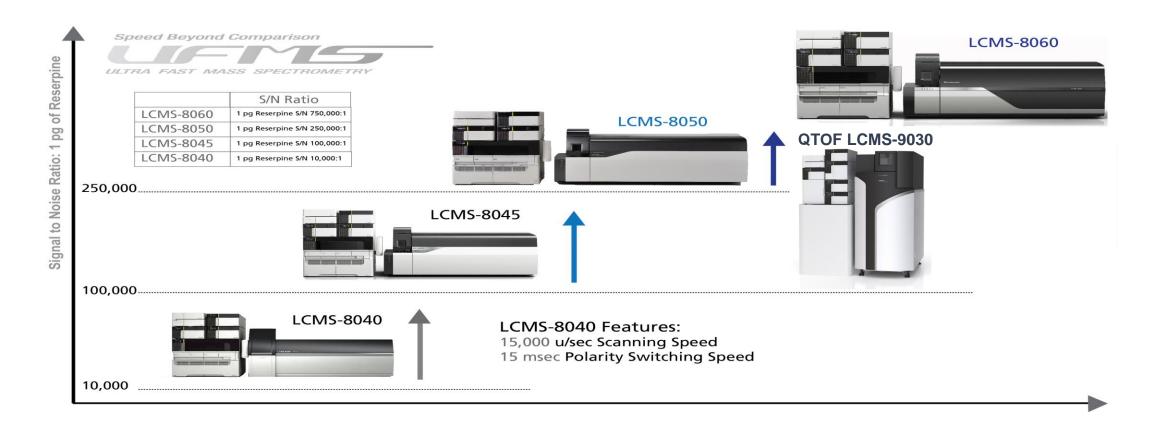
https://www.ewg.org/interactive-maps/2019_pfas_contamination/map/

Purple – Military Sites; Blue – Drinking water; Pink - Other

No army facilities listed among the locations with PFAS concentrations in the drinking water supply above EPA's HA.

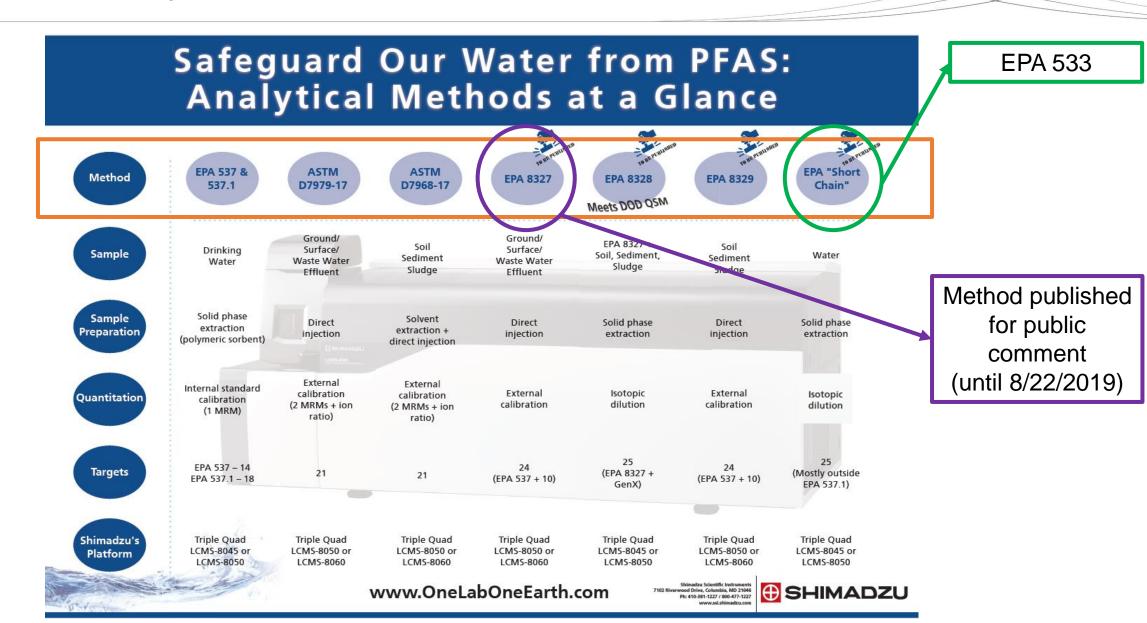
() SHIMADZU

What's next?

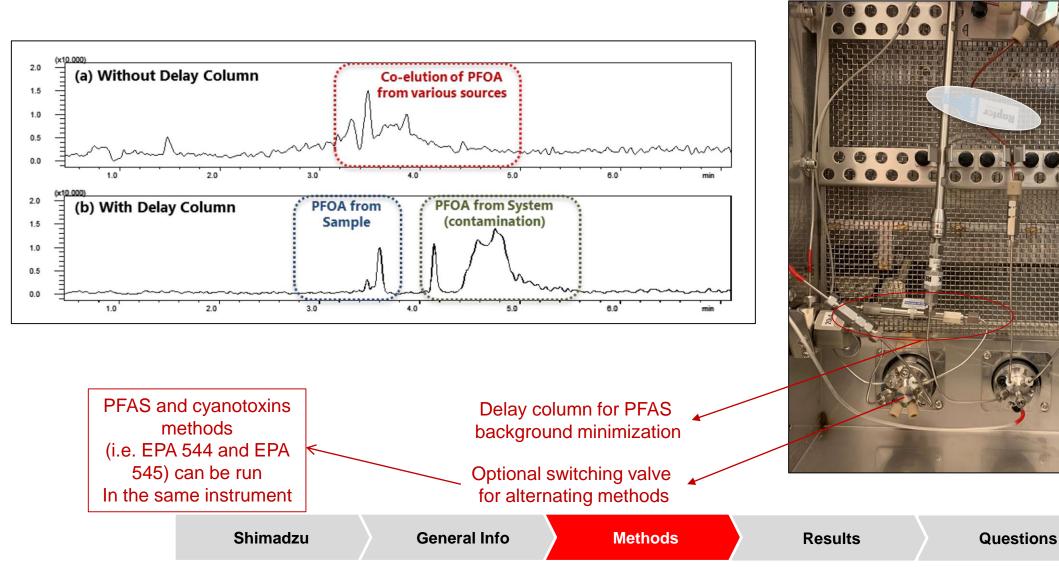

- On 2/14/2019 EPA announced "the most comprehensive cross-agency plan to address an emerging chemical of concern ever undertaken by EPA", including:
 - Establishing a Maximum Contaminant Level and
 - Proposing a regulatory determination by the end of 2019
 - Monitoring of selected PFAS in next UCMR.

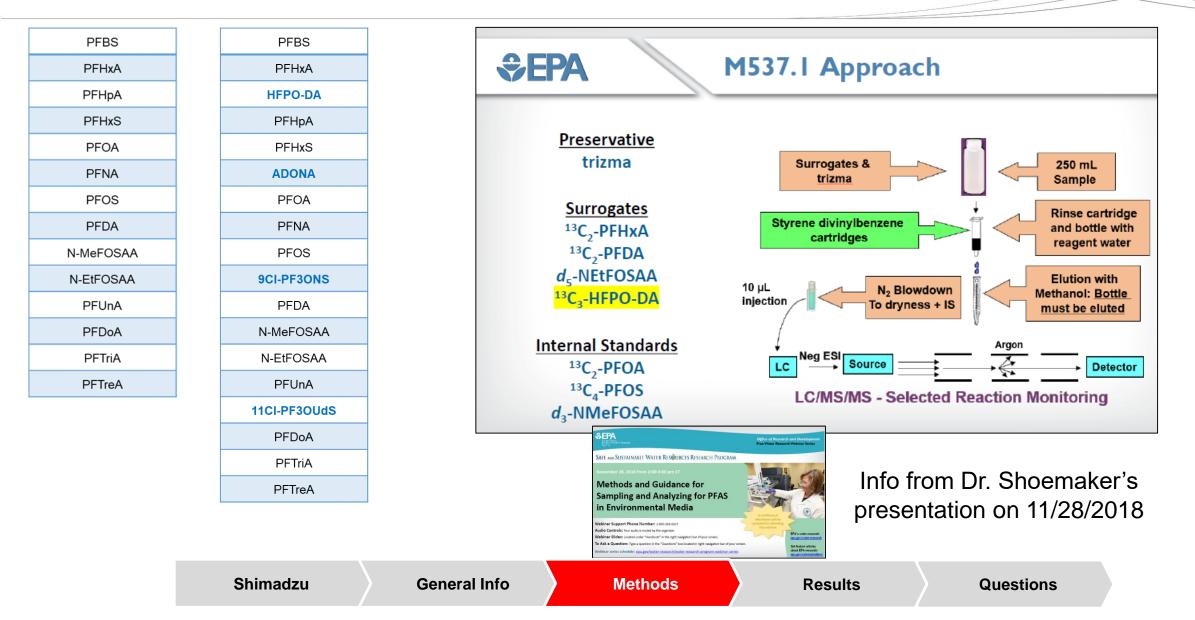
PFAS Method Scope

Draft Method 533	Both Methods	Method 537.1
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	11-chloroeicosafluoro-3-oxaundecane sulfonic acid (11Cl-PF3OUdS) ¹	 N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)
1H, 1H, 2H, 2H- perfluorohexane sulfonic acid (4:2 FTS)	9-chlorohexadecafluoro-3-oxanone-1- sulfonic acid (9CI-PF3ON5) ²	N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	4,8-dioxa-3H-perfluorononanoic acid (ADONA) ³	Perfluorotetradecanoic acid (PFTA)
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	Hexafluoropropylene oxide dimer acid (HFPO-DA)*	Perfluorotridecanoic acid (PFTrDA)
Perfluoro (2-ethoxyethane) sulfonic acid (PFEESA)	Perfluorodecanoic acid (PFDA)	
Perfluoro-3-methoxypropanoic acid (PFMPA)	Perfluorododecanoic acid (PFDoA)	
Perfluoro-4-methoxybutanoic acid (PFMBA)	Perfluorohexanoic acid (PFHxA)	
Perfluorobutanoic acid (PFBA)	Perfluoroundecanoic acid (PFUnA)	
Perfluoroheptanesulfonic acid (PFHpS)	Perfluorobutanesulfonic acid (PFBS)	
Perfluoropentanesulfonic acid (PFPeS)	Perfluoroheptanoic acid (PFHpA)	
Perfluoropentanoic acid (PFPeA)	Perfluorohexanesulfonic acid (PFHxS	
	Perfluorononanoic acid (PFNA)	
	Perfluorooctanoic acid (PFOA)	
	Perfluorooctanesulfonic acid (PFOS)	
¹ 11Cl-PF3OUdS is also available as potassium sal ² 9Cl-PF3ONS is also available as potassium salt ³ ADONA is also available as sodium salt and am		Bold= monitored under UCMR 3 * GenX chemical

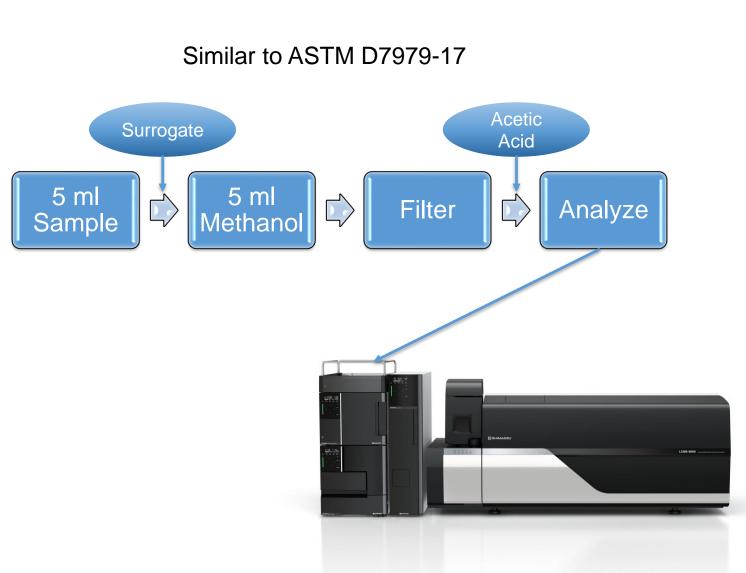

Presented at the UCMR5 Stakeholders Meeting on 7/16/2019

Shimadzu's Solutions for PFAS quantitation

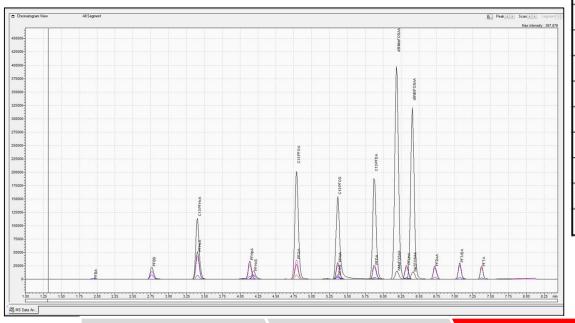



Standardized Analytical Methods

How to minimize background PFAS


EPA 537 and EPA 537.1 – Sample preparation

🕀 SHIMADZU

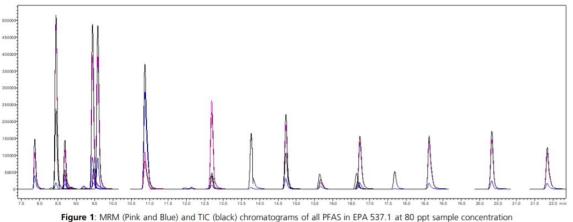

Draft EPA 8327: Targets and Sample preparation

Target	Surrogate
PFBS	13C3-PFBS
PFHxS	13C3-PFxS
PFOS	13C8-PFOS
4:2 FTS	13C2-4:2 FTS
6:2 FTS	13C2-6:2 FTS
8:2 FTS	13C2-8:2 FTS
L-PFPeS	-
L-PFHpS	-
L-PFNS	-
L-PFDS	-
PFBA	13C4-PFBA
PFPeA	13C5-PFPeA
PFHxA	13C5-PFHxA
PFHpA	13C4-PFHpA
PFOA	13C8-PFOA
PFNA	13C9-PFNA
PFDA	13C6-PFDA
PFUnA	13C7-PFUnA
PFDoA	13C2-PFDoA
PFTriA	-
PFTreA	13C2-PFTreA
N-EtFOSAA	D3-N-EtFOSAA
N-MeFOSAA	D3-N-MeFOSAA
FOSA	13C8-PFOSA

Addressing monitoring requirements

- High throughput running an 8.5 min gradient for method EPA 537 with LCMS 8050.
- Reporting limits suitable for current limits for PFAS in potable water. Injection volume: 3 µL.

Acronym	Reporting Limit	Method Detection Limit		
PFOS	5 ng/L	0.88 ng/L		
PFOA	5 ng/L	1.2 ng/L		
PFHxS	5 ng/L	1.42 ng/L		
PFHpA	5 ng/L	1.16 ng/L		
PFNA	5 ng/L	1.15 ng/L		
PFBS	5 ng/L	1.67 ng/L		
PFHxA	5 ng/L	1.25 ng/L		
PFDA	5 ng/L	1.14 ng/L		
NMeFOSAA	5 ng/L	1.08 ng/L		
PFUnA	5 ng/L	1.24 ng/L		
NEtFOSAA	5 ng/L	1.14 ng/L		
PFDoA	5 ng/L	1.31 ng/L		
PFTrDA	5 ng/L	1.1 ng/L		
PFTA	5 ng/L	1.08 ng/L		


Shimadzu

Methods

EPA 537.1: same performance with new compounds

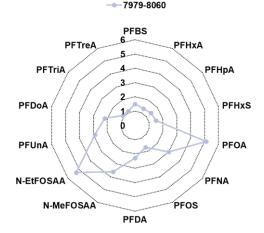
Information provided by Brahm Prakash and Jerry Byrne (Shimadzu)

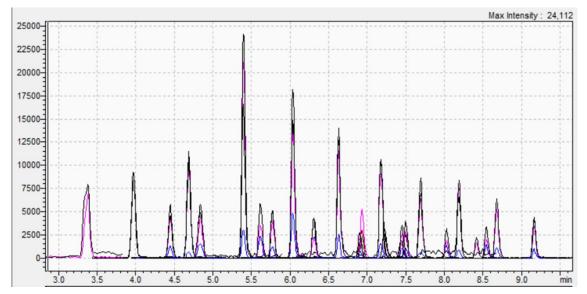
- Source conditions modified for EPA 537.1 to achieve required sensitivity for GenX.
- Similar results obtained with **QTOF LCMS-9030.**

Compound	Spiked Conc (ppt)	Calculated Conc (ppt)	Accuracy	%RSD (n=8)	MDL (ppt)
PFBS	4	3.84	96.0	4.4	0.48
PFHxA	4	3.70	92	7.3	0.79
HFPO-DA	4	3.55	89	8.6	0.88
PFHpA	4	3.87	97	6.2	0.69
PFHxS	4	3.74	93	5.7	0.61
ADONA	4	3.72	93	5.4	0.58
PFOA	4	3.71	93	5.5	0.59
PFNA	4	3.79	95	5.2	0.57
PFOS	4	3.76	94	11.1	1.21
9CI-PF3ONS	4	3.63	91	7.9	0.82
PFDA	4	3.67	92	5.7	0.60
N-MeFOSAA	4	3.55	89	15.9	1.64
N-EtFOSAA	4	3.81	95	7.3	0.81
PFUnA	4	3.56	89	10.2	1.05
L1CI-PF3OUdS	4	3.41	85	12.7	1.25
PFDoA	4	3.73	93	5.4	0.58
PFTriA	4	3.74	93	5.7	0.62
PFTreA	4	3.67	92	5.7	0.60

EPA 537.1

Data acquired with LCMS-8045 with 5 µL injection

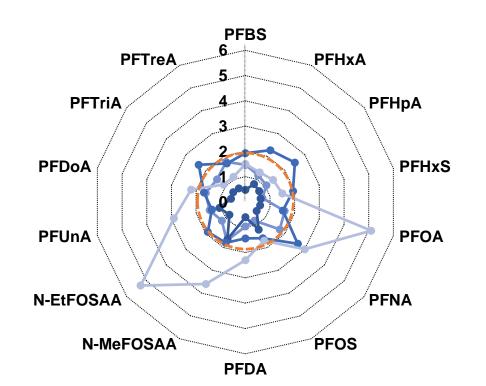

Shimadzu


Results

Draft EPA 8327 – direct injection for non-potable waters

Information provided by Brahm Prakash and Jerry Byrne (Shimadzu)

Apparent higher MDLs because there is not sample preconcentration by SPE. Fast turn-aroundtime because of "dilute and shoot" approach.



Compounds	Measured Concentration, ng/L	%Recovery	S/N
PFBA	5.19	103.71	7.90
PFPeA	5	99.94	5.01
4-2 FTS	5.17	103.43	16.41
PFHxA	5	100.07	6.53
PFBS	4.17	83.38	(INF)
PFHpA	5.02	100.44	(INF)
PFPeS	4.58	91.67	(INF)
6-2 FTS	5.38	107.6	7.87
PFOA	6.37	127.46	12.20
PFHxS	4.98	99.5	1.43
PFNA	5.34	106.89	(INF)
8-2 FTS	4.98	99.56	(INF)
PFHpS	3.85	77.03	(INF)
N-MeFOSAA	5.41	108.22	(INF)
PFDA	5	100.05	4.59
N-EtFOSAA	4.98	99.66	(INF)
PFOS	5.12	102.42	4.29
PFUnA	5.15	103.07	3.84
PFNS	4.81	96.2	7.75
PFDoA	4.87	97.34	(INF)
FOSA	4.19	83.84	(INF)
PFDS	4.75	94.98	(INF)
PFTriA	4.79	95.76	11.78
PFTreA	5.73	114.63	6.16

Method Detection Limits

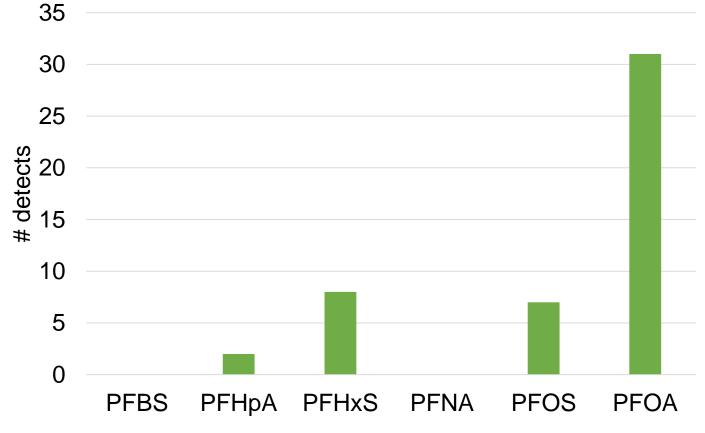
→537-8045 **→**537.1-8045 **→**537-8060 **→**7979-8060

MDLs between <1 to <6 ng/L; most compounds: <2 ng/L

Method Detection Limit, ng/L (537.1-8045)			
HFPO-DA	0.88		
ADONA	0.58		
9CI-PF3ONS 0.82			
11CI-PF3OUdS 1.25			

537.1 – 9030 (QTOF):
Lowest standard analyzed: 2 ng/L
Injection volume: 5 µL

METHOD/MODEL	SAMPLE VOLUME, ml	INJECTION VOLUME, µL
537-8045	250	1
537.1-8045	250	5
537-8060	250	1
7979-8060	na	10

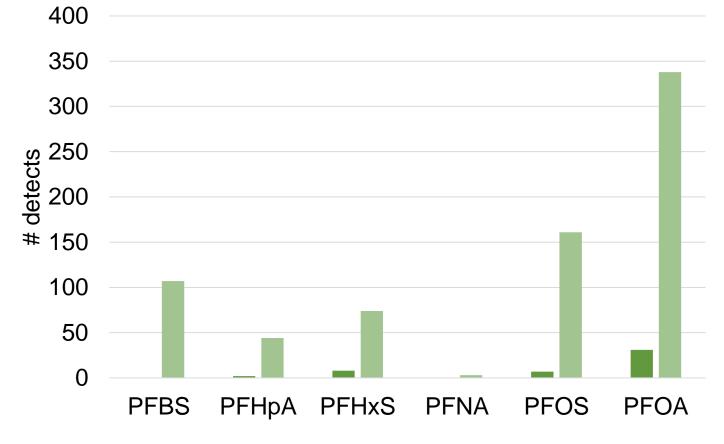

Some results from the field

2013	2015		2017		
0 0	0	\bigcirc	0	0	
201	4	2016		2018	
Unregulated Contaminant Mo	onitoring Rule – EPA 537		EPA 537		-
Unregulated Contaminant Mo Compound	_		pound	PQL, ng/L	•
Compound	MRL, ng/L	PF	pound BS HxS	5.0 5.0	-
Compound PFBS	MRL, ng/L 90	PF PF	pound BS HxS HxA	5.0 5.0 5.0	•
Compound PFBS PFHpA	MRL, ng/L 90 10	PF PF PF	pound iBS HxS HxA HpA	5.0 5.0 5.0 5.0	•
Compound PFBS PFHpA PFHxS	MRL, ng/L 90 10 30	PF PF PF PF	pound BS HxS HxA	5.0 5.0 5.0	•
Compound PFBS PFHpA PFHxS PFNA	MRL, ng/L 90 10 30 20	PF PF PF PF PF PF PF	pound FBS HxS HxA HpA OS OS OA	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	•
Compound PFBS PFHpA PFHxS PFNA PFOS	MRL, ng/L 90 10 30 20 40	PF PFI PFI PF PF PF PF	pound FBS HxS HxA HpA COS COA FNA FDA	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	•
Compound PFBS PFHpA PFHxS PFNA	MRL, ng/L 90 10 30 20	PF PF PF PF PF PF PF PF	pound FBS HxS HxA HpA OS OS OA	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	•
Compound PFBS PFHpA PFHxS PFNA PFOS	MRL, ng/L 90 10 30 20 40	PF PF PF PF PF PF PF PF	pound FBS HxS HxA HpA COS COA FNA FDA UnA	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	•

12,581 data reported, from 6 States and commercial customers

Shimadzu	General Info	Methods	Results	Questions
----------	--------------	---------	---------	-----------

Some results – UCMR3


Total # of detects >MRL: 48

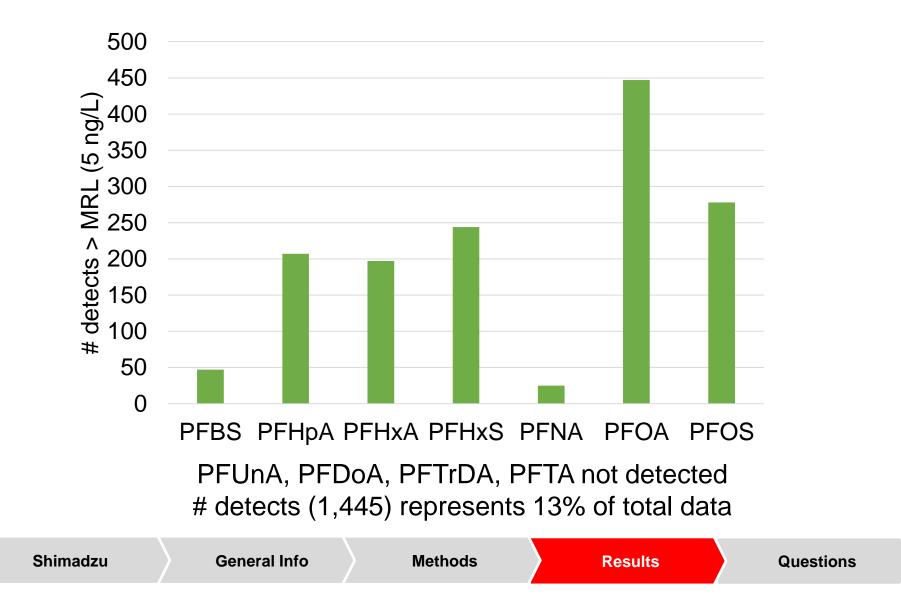
from 6 States and commercial customers

Unregulated Contaminant Monitoring Rule – EPA 537				
Compound	MRL, ng/L			
PFBS	90			
PFHpA	10			
PFHxS	30			
PFNA	20			
PFOS	40			
PFOA	20			

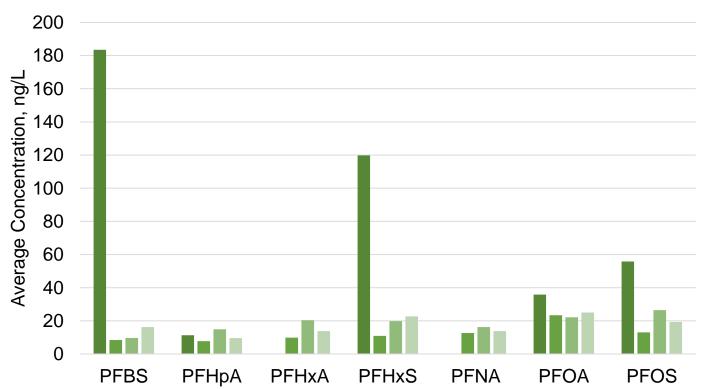
Shimadzu	General Info	Methods	Results	Questions
----------	--------------	---------	---------	-----------

Some results – UCMR3

Total # of detects >MRL: 48 ">5 ng/L": 727


from 6 States and commercial customers

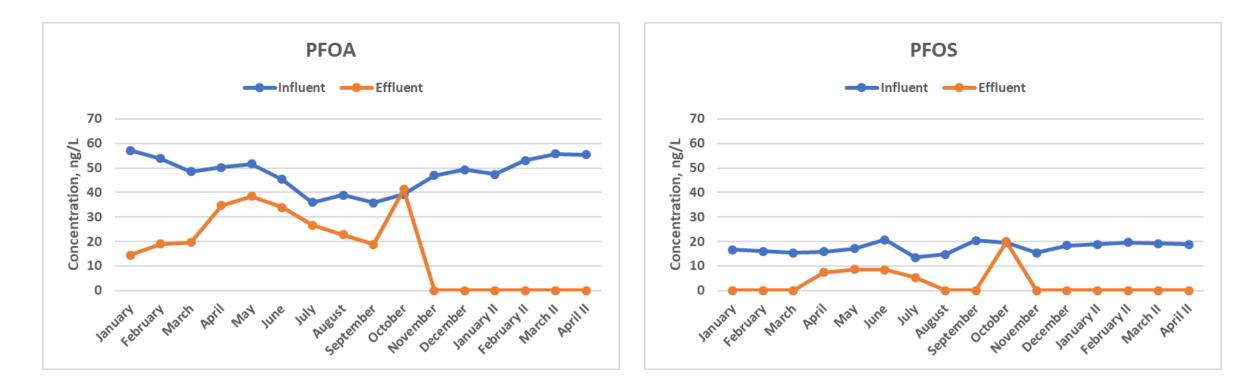
Unregulated Contaminant Monitoring Rule – EPA 537				
Compound	MRL, ng/L			
PFBS	90			
PFHpA	10			
PFHxS	30			
PFNA	20			
PFOS	40			
PFOA	20			


Questions

Shimadzu	General Info	Methods	Results
----------	--------------	---------	---------

Some results – after UCMR3

Some results – after UCMR3


■ 2016 ■ 2017 ■ 2018 ■ Overall

		PFBS	PFHpA	PFHxA	PFHxS	PFNA	PFOA	PFOS
2016	Min	31.1	6.4		5.1		12.1	5.5
	Max	336	54		1304		66	584
2017	Min	5.1	5	5	5.1	5.1	5.1	5
	Max	35.9	21.6	60.4	60.8	57.1	57.1	118.5
2018	Min	5	5.5	5	5	5	5.3	5.2
	Max	16.1	36.2	67.2	60.1	52.9	64.1	90.2

Shimadzu General Info Methods Results

SHIMADZU

Some results: what do the numbers mean?

Location in violation of potential regulatory limit for PFOA and PFOS before implementing treatment via adsorption onto Granular Activated Carbon

Take home messages

Scientific community has been working on PFAS for more than 10 years. And there is information and robust solutions for monitoring available.

It is important to understand the specific needs and questions from your laboratory and stakeholders.

To succeed in monitoring PFAS in your waters, engage early in conversations with teams outside your lab!

Shimadzu

Solutions for your environmental analysis

www.OneLabOneEarth.com

Ruth Marfil-Vega, PhD Environmental Marketing Manager

rmmarfilvega@shimadzu.com

Shimadzu

For Research Use Only. Not for use in diagnostic procedures.

This presentation may contain references to products that are not available in your country. All rights reserved. Information subject to change without notice.